{"title":"部分零强迫接收机的毫米波上行蜂窝网络覆盖分析","authors":"Chao Fang, Behrooz Makki, T. Svensson","doi":"10.23919/WIOPT.2017.7959947","DOIUrl":null,"url":null,"abstract":"Cellular networks operating at millimeter wave (mmWave) frequencies are able to achieve multi-gigabit-per-second data rates due to the large bandwidth available. However, the data transmission range will be shorter and significant signal power difference will be observed between line-of-sight (LOS) and non-line-of-sight (NLOS) links. This paper considers interference management and useful signal enhancement in the uplink transmission of small-cell mmWave networks. Taking blockages into account, we analyze the coverage performance of the partial-zero-forcing (PZF) receiver which utilizes a number of antennas to cancel out the strongest uplink interferers and uses the rest of the antennas for boosting the useful signal. Using stochastic geometry, we derive analytical expressions for the coverage probability of the PZF receiver under a LOS probability function based path loss model. For a broad range of parameter settings, the maximum coverage probability is achieved by using most antennas for array gain and only canceling a few strongest interferers. Particularly, compared to zero-forcing, the PZF scheme can improve the coverage probability significantly.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"8 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Coverage analysis for millimeter wave uplink cellular networks with partial zero-forcing receivers\",\"authors\":\"Chao Fang, Behrooz Makki, T. Svensson\",\"doi\":\"10.23919/WIOPT.2017.7959947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular networks operating at millimeter wave (mmWave) frequencies are able to achieve multi-gigabit-per-second data rates due to the large bandwidth available. However, the data transmission range will be shorter and significant signal power difference will be observed between line-of-sight (LOS) and non-line-of-sight (NLOS) links. This paper considers interference management and useful signal enhancement in the uplink transmission of small-cell mmWave networks. Taking blockages into account, we analyze the coverage performance of the partial-zero-forcing (PZF) receiver which utilizes a number of antennas to cancel out the strongest uplink interferers and uses the rest of the antennas for boosting the useful signal. Using stochastic geometry, we derive analytical expressions for the coverage probability of the PZF receiver under a LOS probability function based path loss model. For a broad range of parameter settings, the maximum coverage probability is achieved by using most antennas for array gain and only canceling a few strongest interferers. Particularly, compared to zero-forcing, the PZF scheme can improve the coverage probability significantly.\",\"PeriodicalId\":6630,\"journal\":{\"name\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"8 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2017.7959947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coverage analysis for millimeter wave uplink cellular networks with partial zero-forcing receivers
Cellular networks operating at millimeter wave (mmWave) frequencies are able to achieve multi-gigabit-per-second data rates due to the large bandwidth available. However, the data transmission range will be shorter and significant signal power difference will be observed between line-of-sight (LOS) and non-line-of-sight (NLOS) links. This paper considers interference management and useful signal enhancement in the uplink transmission of small-cell mmWave networks. Taking blockages into account, we analyze the coverage performance of the partial-zero-forcing (PZF) receiver which utilizes a number of antennas to cancel out the strongest uplink interferers and uses the rest of the antennas for boosting the useful signal. Using stochastic geometry, we derive analytical expressions for the coverage probability of the PZF receiver under a LOS probability function based path loss model. For a broad range of parameter settings, the maximum coverage probability is achieved by using most antennas for array gain and only canceling a few strongest interferers. Particularly, compared to zero-forcing, the PZF scheme can improve the coverage probability significantly.