关于重复集合索引问题

Ali Alatabbi, Carl Barton, C. Iliopoulos
{"title":"关于重复集合索引问题","authors":"Ali Alatabbi, Carl Barton, C. Iliopoulos","doi":"10.1109/BIBMW.2012.6470220","DOIUrl":null,"url":null,"abstract":"In large data sets such as genomes from a single species, large sets of reads, and version control data it is often noted that each entry only differs from another by a very small number of variations. This leads to a large set of data with a great deal of redundancy and repetitiveness. Rapid development in DNA sequencing technologies has caused a drastic growth in the size of publicly available sequence databases with such data. DNA sequencing has become so fast and cost-effective that sequencing individual genomes will soon become a common task [9] making querying and storing such sets of data an important task. In this paper, we propose an indexing structure for highly repetitive collections of sequence data based on a multilevel g-gram model. In particular, the proposed algorithm accommodates variations that may occur in the target sequence with respect to the reference sequence. The paper is organized as follows. Section [1] and [2] introduce the basic concepts and go through the related literature. In Section [3] we present notions and facts. Details of the proposed data structure/algorithm will be given in Section [5] and [4], Section [6] discusses complexity analysis and Section [7] gives conclusions of future work.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the repetitive collection indexing problem\",\"authors\":\"Ali Alatabbi, Carl Barton, C. Iliopoulos\",\"doi\":\"10.1109/BIBMW.2012.6470220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In large data sets such as genomes from a single species, large sets of reads, and version control data it is often noted that each entry only differs from another by a very small number of variations. This leads to a large set of data with a great deal of redundancy and repetitiveness. Rapid development in DNA sequencing technologies has caused a drastic growth in the size of publicly available sequence databases with such data. DNA sequencing has become so fast and cost-effective that sequencing individual genomes will soon become a common task [9] making querying and storing such sets of data an important task. In this paper, we propose an indexing structure for highly repetitive collections of sequence data based on a multilevel g-gram model. In particular, the proposed algorithm accommodates variations that may occur in the target sequence with respect to the reference sequence. The paper is organized as follows. Section [1] and [2] introduce the basic concepts and go through the related literature. In Section [3] we present notions and facts. Details of the proposed data structure/algorithm will be given in Section [5] and [4], Section [6] discusses complexity analysis and Section [7] gives conclusions of future work.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2012.6470220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2012.6470220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在大型数据集中,例如来自单一物种的基因组、大型读取集和版本控制数据中,通常会注意到每个条目与另一个条目的差异只有非常小的变化。这将导致大量的数据集具有大量的冗余和重复。DNA测序技术的快速发展导致了包含此类数据的公开序列数据库规模的急剧增长。DNA测序已经变得如此快速和经济,测序个体基因组将很快成为一项常见的任务[9],使查询和存储这些数据集成为一项重要任务。在本文中,我们提出了一种基于多层g-gram模型的高度重复序列数据集合的索引结构。特别地,所提出的算法容纳相对于参考序列在目标序列中可能发生的变化。本文组织如下。[1]和[2]部分介绍了基本概念,并对相关文献进行了梳理。在第[3]节中,我们提出概念和事实。关于所提出的数据结构/算法的细节将在章节[5]和[4]中给出,章节[6]讨论了复杂性分析,章节[7]给出了未来工作的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the repetitive collection indexing problem
In large data sets such as genomes from a single species, large sets of reads, and version control data it is often noted that each entry only differs from another by a very small number of variations. This leads to a large set of data with a great deal of redundancy and repetitiveness. Rapid development in DNA sequencing technologies has caused a drastic growth in the size of publicly available sequence databases with such data. DNA sequencing has become so fast and cost-effective that sequencing individual genomes will soon become a common task [9] making querying and storing such sets of data an important task. In this paper, we propose an indexing structure for highly repetitive collections of sequence data based on a multilevel g-gram model. In particular, the proposed algorithm accommodates variations that may occur in the target sequence with respect to the reference sequence. The paper is organized as follows. Section [1] and [2] introduce the basic concepts and go through the related literature. In Section [3] we present notions and facts. Details of the proposed data structure/algorithm will be given in Section [5] and [4], Section [6] discusses complexity analysis and Section [7] gives conclusions of future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1