{"title":"种源分析:走向优质种源","authors":"Y. Cheah, Beth Plale","doi":"10.1109/eScience.2012.6404480","DOIUrl":null,"url":null,"abstract":"Data provenance, a key piece of metadata that describes the lifecycle of a data product, is crucial in aiding scientists to better understand and facilitate reproducibility and reuse of scientific results. Provenance collection systems often capture provenance on the fly and the protocol between application and provenance tool may not be reliable. As a result, data provenance can become ambiguous or simply inaccurate. In this paper, we identify likely quality issues in data provenance. We also establish crucial quality dimensions that are especially critical for the evaluation of provenance quality. We analyze synthetic and real-world provenance based on these quality dimensions and summarize our contributions to provenance quality.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"81 5","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Provenance analysis: Towards quality provenance\",\"authors\":\"Y. Cheah, Beth Plale\",\"doi\":\"10.1109/eScience.2012.6404480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data provenance, a key piece of metadata that describes the lifecycle of a data product, is crucial in aiding scientists to better understand and facilitate reproducibility and reuse of scientific results. Provenance collection systems often capture provenance on the fly and the protocol between application and provenance tool may not be reliable. As a result, data provenance can become ambiguous or simply inaccurate. In this paper, we identify likely quality issues in data provenance. We also establish crucial quality dimensions that are especially critical for the evaluation of provenance quality. We analyze synthetic and real-world provenance based on these quality dimensions and summarize our contributions to provenance quality.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":\"81 5\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2012.6404480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data provenance, a key piece of metadata that describes the lifecycle of a data product, is crucial in aiding scientists to better understand and facilitate reproducibility and reuse of scientific results. Provenance collection systems often capture provenance on the fly and the protocol between application and provenance tool may not be reliable. As a result, data provenance can become ambiguous or simply inaccurate. In this paper, we identify likely quality issues in data provenance. We also establish crucial quality dimensions that are especially critical for the evaluation of provenance quality. We analyze synthetic and real-world provenance based on these quality dimensions and summarize our contributions to provenance quality.