基于分布式多传感器伪线性卡尔曼滤波的纯方位跟踪

Jungen Zhang, Shanglin Yang
{"title":"基于分布式多传感器伪线性卡尔曼滤波的纯方位跟踪","authors":"Jungen Zhang, Shanglin Yang","doi":"10.46300/9106.2022.16.107","DOIUrl":null,"url":null,"abstract":"For bearings-only tracking (BOT), there are mainly two problems of nonlinear filtering and poor range observability. In the paper, a new distributed multisensor pseudolinear Kalman filter (PLKF) algorithm is proposed. The sensors use an instrumental vector PLKF (IV-PLKF) to process the measurements of the target independently, which can tackle the bias arising from the correlation between the measurement vector and pseudolinear noise by the bias compensation PLKF (BC-PLKF). The IV-PLKF embeds the recursive instrumental vector estimation method into the BC-PLKF, uses it to construct the instrumental vector, and applies the method of selective angle measurement to modify the local target state estimation and covariance. In the fusion center, the target state can be estimated by using the multisensor optimal information fusion criterion. Then the Cramer-Rao lower bound (CRLB) of multisensor BOT is derived. Simulation results show the effectiveness of the algorithm.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":"12 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bearings-only Tracking Based on Distributed Multisensor Pseudolinear Kalman Filter\",\"authors\":\"Jungen Zhang, Shanglin Yang\",\"doi\":\"10.46300/9106.2022.16.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For bearings-only tracking (BOT), there are mainly two problems of nonlinear filtering and poor range observability. In the paper, a new distributed multisensor pseudolinear Kalman filter (PLKF) algorithm is proposed. The sensors use an instrumental vector PLKF (IV-PLKF) to process the measurements of the target independently, which can tackle the bias arising from the correlation between the measurement vector and pseudolinear noise by the bias compensation PLKF (BC-PLKF). The IV-PLKF embeds the recursive instrumental vector estimation method into the BC-PLKF, uses it to construct the instrumental vector, and applies the method of selective angle measurement to modify the local target state estimation and covariance. In the fusion center, the target state can be estimated by using the multisensor optimal information fusion criterion. Then the Cramer-Rao lower bound (CRLB) of multisensor BOT is derived. Simulation results show the effectiveness of the algorithm.\",\"PeriodicalId\":13929,\"journal\":{\"name\":\"International Journal of Circuits, Systems and Signal Processing\",\"volume\":\"12 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9106.2022.16.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2022.16.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

纯方位跟踪主要存在非线性滤波和距离可观测性差两个问题。提出了一种新的分布式多传感器伪线性卡尔曼滤波(PLKF)算法。传感器采用仪器矢量PLKF (IV-PLKF)独立处理目标的测量值,通过偏置补偿PLKF (BC-PLKF)解决测量矢量与伪线性噪声相关产生的偏置。IV-PLKF将递归仪器矢量估计方法嵌入BC-PLKF中,利用递归仪器矢量构造仪器矢量,并采用选择性角度测量方法对局部目标状态估计和协方差进行修正。在融合中心,利用多传感器最优信息融合准则对目标状态进行估计。然后推导了多传感器BOT的Cramer-Rao下界(CRLB)。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bearings-only Tracking Based on Distributed Multisensor Pseudolinear Kalman Filter
For bearings-only tracking (BOT), there are mainly two problems of nonlinear filtering and poor range observability. In the paper, a new distributed multisensor pseudolinear Kalman filter (PLKF) algorithm is proposed. The sensors use an instrumental vector PLKF (IV-PLKF) to process the measurements of the target independently, which can tackle the bias arising from the correlation between the measurement vector and pseudolinear noise by the bias compensation PLKF (BC-PLKF). The IV-PLKF embeds the recursive instrumental vector estimation method into the BC-PLKF, uses it to construct the instrumental vector, and applies the method of selective angle measurement to modify the local target state estimation and covariance. In the fusion center, the target state can be estimated by using the multisensor optimal information fusion criterion. Then the Cramer-Rao lower bound (CRLB) of multisensor BOT is derived. Simulation results show the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuits, Systems and Signal Processing
International Journal of Circuits, Systems and Signal Processing Engineering-Electrical and Electronic Engineering
自引率
0.00%
发文量
155
期刊最新文献
Stochastic Machine Learning Models for Mutation Rate Analysis of Malignant Cancer Cells in Patients with Acute Lymphoblastic Leukemia Detecting Small Objects Using a Smartphone and Neon Camera Optimization of New Energy Vehicle Road Noise Problem Based on Finite Element Analysis Method Base Elements for Artificial Neural Network: Structure Modeling, Production, Properties Distributed Generation Hosting Capacity Evaluation for Distribution Networks Considering Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1