Garmsar盐穴土壤中突尼斯链霉菌的分离鉴定及其对铜绿假单胞菌的抑菌活性和基因表达活性

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Main Group Chemistry Pub Date : 2022-01-18 DOI:10.3233/mgc-210172
M. Nikbakht, B. Omidi, Mohammad Ali Amozegar, K. Amini
{"title":"Garmsar盐穴土壤中突尼斯链霉菌的分离鉴定及其对铜绿假单胞菌的抑菌活性和基因表达活性","authors":"M. Nikbakht, B. Omidi, Mohammad Ali Amozegar, K. Amini","doi":"10.3233/mgc-210172","DOIUrl":null,"url":null,"abstract":"It is known that more than 70% of the current antibiotics have been produced by Streptomyces; therefore, the main goal of the present study was to isolate halophiles Streptomyces to investigate their antimicrobial properties on the expression of the pathogenic genes of clinically resistant Pseudomonas aeruginosa. To this aim, isolation of Streptomyces from soil was performed by serial dilution method, and cultivation on ISP2 and SCA medium. The secondary metabolite was extracted by ethyl acetate method. The presence of exo A, alg D and oprl genes were determined by PCR in 50 clinical isolates of Pseudomonas aeruginosa. The inhibitory effect of active metabolites on gene expression were investigated by employing the real-time PCR technique. The purification of secondary metabolites were performed by employing the HPLC technique. Moreover, the FTIR technique was employed to determine the functional groups to help performing identifications by employing the LC-MS technique. Finally, selected Streptomyces was identified by 16S ribosomal RNA gene. Accordingly, the possible forms of Streptomyces were isolated and identified, in which Streptomyces number 25 had the highest growth inhibition zone against the clinical strains of Pseudomonas aeruginosa. The obtained results of molecular analysis showed 95.4% similarity to Streptomyces tunisiensis. The effect of selected Streptomyces secondary metabolites reduced expressions of both of exo A and algD genes in 1024μg/mL concentration. In this regard, the potent fraction could be known as an isobutyl Nonactin analogue. The concluding remarks of this work showed the antimicrobial activity of halophilus Streptomyces species against the resistant strains of Pseudomonas aeruginosa with the ability of producing antibiotics proposing for running further investigations to determine the active compound structures.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"47 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and identification of Streptomyces tunisiensis from Garmsar salt cave soil with antibacterial and gene expression activity against Pseudomonas aeruginosa\",\"authors\":\"M. Nikbakht, B. Omidi, Mohammad Ali Amozegar, K. Amini\",\"doi\":\"10.3233/mgc-210172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that more than 70% of the current antibiotics have been produced by Streptomyces; therefore, the main goal of the present study was to isolate halophiles Streptomyces to investigate their antimicrobial properties on the expression of the pathogenic genes of clinically resistant Pseudomonas aeruginosa. To this aim, isolation of Streptomyces from soil was performed by serial dilution method, and cultivation on ISP2 and SCA medium. The secondary metabolite was extracted by ethyl acetate method. The presence of exo A, alg D and oprl genes were determined by PCR in 50 clinical isolates of Pseudomonas aeruginosa. The inhibitory effect of active metabolites on gene expression were investigated by employing the real-time PCR technique. The purification of secondary metabolites were performed by employing the HPLC technique. Moreover, the FTIR technique was employed to determine the functional groups to help performing identifications by employing the LC-MS technique. Finally, selected Streptomyces was identified by 16S ribosomal RNA gene. Accordingly, the possible forms of Streptomyces were isolated and identified, in which Streptomyces number 25 had the highest growth inhibition zone against the clinical strains of Pseudomonas aeruginosa. The obtained results of molecular analysis showed 95.4% similarity to Streptomyces tunisiensis. The effect of selected Streptomyces secondary metabolites reduced expressions of both of exo A and algD genes in 1024μg/mL concentration. In this regard, the potent fraction could be known as an isobutyl Nonactin analogue. The concluding remarks of this work showed the antimicrobial activity of halophilus Streptomyces species against the resistant strains of Pseudomonas aeruginosa with the ability of producing antibiotics proposing for running further investigations to determine the active compound structures.\",\"PeriodicalId\":18027,\"journal\":{\"name\":\"Main Group Chemistry\",\"volume\":\"47 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3233/mgc-210172\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-210172","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,目前70%以上的抗生素是由链霉菌生产的;因此,本研究的主要目的是分离嗜盐菌链霉菌,研究其抑菌特性对临床耐药铜绿假单胞菌致病基因表达的影响。为此,采用连续稀释法从土壤中分离链霉菌,并在ISP2和SCA培养基上培养。采用乙酸乙酯法提取次生代谢物。采用PCR方法对50株铜绿假单胞菌的exo A、alg D和oprl基因进行了检测。采用实时荧光定量PCR技术研究活性代谢物对基因表达的抑制作用。采用高效液相色谱法对次生代谢物进行纯化。此外,FTIR技术用于确定官能团,以帮助采用LC-MS技术进行鉴定。最后利用16S核糖体RNA基因对所选链霉菌进行鉴定。结果表明,25号链霉菌对铜绿假单胞菌的生长抑制区最高。所得分子分析结果与突尼斯链霉菌相似度为95.4%。所选链霉菌次级代谢物在1024μg/mL浓度下降低了exo A和algD基因的表达。在这方面,有效的部分可以被称为异丁基非肌动蛋白类似物。结论表明,嗜盐链霉菌对铜绿假单胞菌耐药菌株具有抑菌活性,并具有产生抗生素的能力,为进一步研究确定活性化合物结构提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isolation and identification of Streptomyces tunisiensis from Garmsar salt cave soil with antibacterial and gene expression activity against Pseudomonas aeruginosa
It is known that more than 70% of the current antibiotics have been produced by Streptomyces; therefore, the main goal of the present study was to isolate halophiles Streptomyces to investigate their antimicrobial properties on the expression of the pathogenic genes of clinically resistant Pseudomonas aeruginosa. To this aim, isolation of Streptomyces from soil was performed by serial dilution method, and cultivation on ISP2 and SCA medium. The secondary metabolite was extracted by ethyl acetate method. The presence of exo A, alg D and oprl genes were determined by PCR in 50 clinical isolates of Pseudomonas aeruginosa. The inhibitory effect of active metabolites on gene expression were investigated by employing the real-time PCR technique. The purification of secondary metabolites were performed by employing the HPLC technique. Moreover, the FTIR technique was employed to determine the functional groups to help performing identifications by employing the LC-MS technique. Finally, selected Streptomyces was identified by 16S ribosomal RNA gene. Accordingly, the possible forms of Streptomyces were isolated and identified, in which Streptomyces number 25 had the highest growth inhibition zone against the clinical strains of Pseudomonas aeruginosa. The obtained results of molecular analysis showed 95.4% similarity to Streptomyces tunisiensis. The effect of selected Streptomyces secondary metabolites reduced expressions of both of exo A and algD genes in 1024μg/mL concentration. In this regard, the potent fraction could be known as an isobutyl Nonactin analogue. The concluding remarks of this work showed the antimicrobial activity of halophilus Streptomyces species against the resistant strains of Pseudomonas aeruginosa with the ability of producing antibiotics proposing for running further investigations to determine the active compound structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Main Group Chemistry
Main Group Chemistry 化学-化学综合
CiteScore
2.00
自引率
26.70%
发文量
65
审稿时长
>12 weeks
期刊介绍: Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.
期刊最新文献
Sulfone-infused covalent organic polymer derived from poly(2-aminothiophenol) and erythrosine B as an excellent tool for C–H activation Synthesis and single crystal X-ray studies of bis-(trimethylsilylmethyl) tellurium diiodide through an insertion route One-pot polycondensation and characterization of melamine-based polymer for mercury and sodium hypochlorite sensing In silico antibacterial, anticancer, antioxidant, antidiabetic activity predictions of the dual organic peroxide 2,5-dimethyl-2,5-di(tert-butyl peroxyl)hexane Syntheses characterization, and photocatalytic property of an organic-inorganic compound obtained by bromine salt and the β-Mo8O26 anion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1