社交媒体中的情绪状态与情绪词汇

A. Beasley, Winter A. Mason
{"title":"社交媒体中的情绪状态与情绪词汇","authors":"A. Beasley, Winter A. Mason","doi":"10.1145/2786451.2786473","DOIUrl":null,"url":null,"abstract":"A number of social media studies have equated people's emotional states with the frequency with which they use affectively positive and negative words in their posts. We explore how such word frequencies relate to a ground truth measure of both positive and negative emotion for 515 Facebook users and 448 Twitter users. We find statistically significant but very weak (ρ in the 0.1 to 0.2 range) correlations between positive and negative emotion-related words from the Linguistic Inquiry Word Count (LIWC) dictionary and a well-validated scale of trait emotionality called the Positive and Negative Affect Schedule (PANAS). We test this for tweets and Facebook status updates, focus on different time slices around the completion of the survey, and consider participants who report expressing emotions frequently on social media. With rare exception, this pattern of low correlation persists, suggesting that for the typical user, dictionary-based sentiment analysis tools may not be sufficient to infer how they truly feel.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Emotional States vs. Emotional Words in Social Media\",\"authors\":\"A. Beasley, Winter A. Mason\",\"doi\":\"10.1145/2786451.2786473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of social media studies have equated people's emotional states with the frequency with which they use affectively positive and negative words in their posts. We explore how such word frequencies relate to a ground truth measure of both positive and negative emotion for 515 Facebook users and 448 Twitter users. We find statistically significant but very weak (ρ in the 0.1 to 0.2 range) correlations between positive and negative emotion-related words from the Linguistic Inquiry Word Count (LIWC) dictionary and a well-validated scale of trait emotionality called the Positive and Negative Affect Schedule (PANAS). We test this for tweets and Facebook status updates, focus on different time slices around the completion of the survey, and consider participants who report expressing emotions frequently on social media. With rare exception, this pattern of low correlation persists, suggesting that for the typical user, dictionary-based sentiment analysis tools may not be sufficient to infer how they truly feel.\",\"PeriodicalId\":93136,\"journal\":{\"name\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2786451.2786473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786451.2786473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

许多社交媒体研究将人们的情绪状态与他们在帖子中使用积极和消极词汇的频率等同起来。我们对515名Facebook用户和448名Twitter用户的积极情绪和消极情绪的基本真实度进行了研究。我们发现,从语言调查字数(LIWC)词典和一个被称为积极和消极情绪表(PANAS)的经过充分验证的特质情绪量表中,积极和消极情绪相关词汇之间存在统计学上显著但非常弱的相关性(ρ值在0.1到0.2范围内)。我们对推特和Facebook状态更新进行了测试,重点关注调查完成前后的不同时间段,并考虑那些经常在社交媒体上表达情绪的参与者。除了极少数例外,这种低相关性的模式仍然存在,这表明对于典型的用户来说,基于词典的情感分析工具可能不足以推断他们的真实感受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotional States vs. Emotional Words in Social Media
A number of social media studies have equated people's emotional states with the frequency with which they use affectively positive and negative words in their posts. We explore how such word frequencies relate to a ground truth measure of both positive and negative emotion for 515 Facebook users and 448 Twitter users. We find statistically significant but very weak (ρ in the 0.1 to 0.2 range) correlations between positive and negative emotion-related words from the Linguistic Inquiry Word Count (LIWC) dictionary and a well-validated scale of trait emotionality called the Positive and Negative Affect Schedule (PANAS). We test this for tweets and Facebook status updates, focus on different time slices around the completion of the survey, and consider participants who report expressing emotions frequently on social media. With rare exception, this pattern of low correlation persists, suggesting that for the typical user, dictionary-based sentiment analysis tools may not be sufficient to infer how they truly feel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opinions on Homeopathy for COVID-19 on Twitter. An Initial Study of Depression Detection on Mandarin Textual through BERT Model WebSci '22: 14th ACM Web Science Conference 2022, Barcelona, Spain, June 26 - 29, 2022 WebSci '21: 13th ACM Web Science Conference 2021, Virtual Event, United Kingdom, 21-25 June, 2021, Companion Publication In conversation with Martha Lane Fox and Wendy Hall on the Future of the Internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1