迁移学习领域随机化技术的评价

Silas Grün, Simon Höninger, Paul Scheikl, B. Hein, T. Kröger
{"title":"迁移学习领域随机化技术的评价","authors":"Silas Grün, Simon Höninger, Paul Scheikl, B. Hein, T. Kröger","doi":"10.1109/ICAR46387.2019.8981654","DOIUrl":null,"url":null,"abstract":"To address the challenge of resource-intensive data collection from real robotic environments, many deep learning applications use synthetic data to train their networks. This creates new problems when transferring the obtained knowledge from the simulated to the real world domain. Various aspects of the simulation, which do not influence the learning objective, can be randomized to enhance generalization to new domains. In this paper, we analyze the effect of these domain randomization techniques. To get an insight into their benefits, we apply them while training a grasp success classifier based on state-of-the-art CNN for an industrial robot as a showcase. We generated a large synthetic data set containing 1.44M RGB images with 48 permutations of 6 different randomizations and a base scenario as training data. The resulting networks, each trained on a different subset of this data set, are evaluated on 3k real world images of the robot performing grasps. We observed the effectiveness of randomization of perspective, distractors, lighting and the grasped box. Notably, we show that pretrained networks benefit from these techniques in particular.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"17 1","pages":"481-486"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Domain Randomization Techniques for Transfer Learning\",\"authors\":\"Silas Grün, Simon Höninger, Paul Scheikl, B. Hein, T. Kröger\",\"doi\":\"10.1109/ICAR46387.2019.8981654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the challenge of resource-intensive data collection from real robotic environments, many deep learning applications use synthetic data to train their networks. This creates new problems when transferring the obtained knowledge from the simulated to the real world domain. Various aspects of the simulation, which do not influence the learning objective, can be randomized to enhance generalization to new domains. In this paper, we analyze the effect of these domain randomization techniques. To get an insight into their benefits, we apply them while training a grasp success classifier based on state-of-the-art CNN for an industrial robot as a showcase. We generated a large synthetic data set containing 1.44M RGB images with 48 permutations of 6 different randomizations and a base scenario as training data. The resulting networks, each trained on a different subset of this data set, are evaluated on 3k real world images of the robot performing grasps. We observed the effectiveness of randomization of perspective, distractors, lighting and the grasped box. Notably, we show that pretrained networks benefit from these techniques in particular.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"17 1\",\"pages\":\"481-486\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了解决从真实机器人环境中收集资源密集型数据的挑战,许多深度学习应用程序使用合成数据来训练他们的网络。这在将获得的知识从模拟领域转移到现实世界领域时产生了新的问题。不影响学习目标的模拟的各个方面可以随机化,以增强对新领域的泛化。本文分析了这些领域随机化技术的效果。为了深入了解它们的好处,我们将它们应用于一个工业机器人,同时训练一个基于最先进的CNN的抓取成功分类器作为展示。我们生成了一个包含144万张RGB图像的大型合成数据集,其中包含6种不同随机化的48种排列,以及一个基本场景作为训练数据。所得的网络,每个都在该数据集的不同子集上进行训练,并在机器人执行抓取的3k个真实世界图像上进行评估。我们观察了随机化视角、干扰物、灯光和抓握盒子的有效性。值得注意的是,我们表明预训练的网络特别受益于这些技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Domain Randomization Techniques for Transfer Learning
To address the challenge of resource-intensive data collection from real robotic environments, many deep learning applications use synthetic data to train their networks. This creates new problems when transferring the obtained knowledge from the simulated to the real world domain. Various aspects of the simulation, which do not influence the learning objective, can be randomized to enhance generalization to new domains. In this paper, we analyze the effect of these domain randomization techniques. To get an insight into their benefits, we apply them while training a grasp success classifier based on state-of-the-art CNN for an industrial robot as a showcase. We generated a large synthetic data set containing 1.44M RGB images with 48 permutations of 6 different randomizations and a base scenario as training data. The resulting networks, each trained on a different subset of this data set, are evaluated on 3k real world images of the robot performing grasps. We observed the effectiveness of randomization of perspective, distractors, lighting and the grasped box. Notably, we show that pretrained networks benefit from these techniques in particular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Domain Randomization Techniques for Transfer Learning Robotito: programming robots from preschool to undergraduate school level A Novel Approach for Parameter Extraction of an NMPC-based Visual Follower Model Automated Conflict Resolution of Lane Change Utilizing Probability Collectives Estimating and Localizing External Forces Applied on Flexible Instruments by Shape Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1