{"title":"检测和解决访问控制系统中的策略错误配置","authors":"Lujo Bauer, Scott Garriss, M. Reiter","doi":"10.1145/1952982.1952984","DOIUrl":null,"url":null,"abstract":"Access-control policy misconfigurations that cause requests to be erroneously denied can result in wasted time, user frustration, and, in the context of particular applications (e.g., health care), very severe consequences. In this article we apply association rule mining to the history of accesses to predict changes to access-control policies that are likely to be consistent with users' intentions, so that these changes can be instituted in advance of misconfigurations interfering with legitimate accesses. Instituting these changes requires the consent of the appropriate administrator, of course, and so a primary contribution of our work is how to automatically determine from whom to seek consent and how to minimize the costs of doing so. We show using data from a deployed access-control system that our methods can reduce the number of accesses that would have incurred costly time-of-access delays by 43%, and can correctly predict 58% of the intended policy. These gains are achieved without impacting the total amount of time users spend interacting with the system.","PeriodicalId":50912,"journal":{"name":"ACM Transactions on Information and System Security","volume":"143 1","pages":"2:1-2:28"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Detecting and resolving policy misconfigurations in access-control systems\",\"authors\":\"Lujo Bauer, Scott Garriss, M. Reiter\",\"doi\":\"10.1145/1952982.1952984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Access-control policy misconfigurations that cause requests to be erroneously denied can result in wasted time, user frustration, and, in the context of particular applications (e.g., health care), very severe consequences. In this article we apply association rule mining to the history of accesses to predict changes to access-control policies that are likely to be consistent with users' intentions, so that these changes can be instituted in advance of misconfigurations interfering with legitimate accesses. Instituting these changes requires the consent of the appropriate administrator, of course, and so a primary contribution of our work is how to automatically determine from whom to seek consent and how to minimize the costs of doing so. We show using data from a deployed access-control system that our methods can reduce the number of accesses that would have incurred costly time-of-access delays by 43%, and can correctly predict 58% of the intended policy. These gains are achieved without impacting the total amount of time users spend interacting with the system.\",\"PeriodicalId\":50912,\"journal\":{\"name\":\"ACM Transactions on Information and System Security\",\"volume\":\"143 1\",\"pages\":\"2:1-2:28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1952982.1952984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1952982.1952984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
Detecting and resolving policy misconfigurations in access-control systems
Access-control policy misconfigurations that cause requests to be erroneously denied can result in wasted time, user frustration, and, in the context of particular applications (e.g., health care), very severe consequences. In this article we apply association rule mining to the history of accesses to predict changes to access-control policies that are likely to be consistent with users' intentions, so that these changes can be instituted in advance of misconfigurations interfering with legitimate accesses. Instituting these changes requires the consent of the appropriate administrator, of course, and so a primary contribution of our work is how to automatically determine from whom to seek consent and how to minimize the costs of doing so. We show using data from a deployed access-control system that our methods can reduce the number of accesses that would have incurred costly time-of-access delays by 43%, and can correctly predict 58% of the intended policy. These gains are achieved without impacting the total amount of time users spend interacting with the system.
期刊介绍:
ISSEC is a scholarly, scientific journal that publishes original research papers in all areas of information and system security, including technologies, systems, applications, and policies.