地图匹配的水平缩放框架:使用Map- reduce

V. Tiwari, Arti Arya, Sudha Chaturvedi
{"title":"地图匹配的水平缩放框架:使用Map- reduce","authors":"V. Tiwari, Arti Arya, Sudha Chaturvedi","doi":"10.1109/ICIT.2014.70","DOIUrl":null,"url":null,"abstract":"Map Matching is a well-established problem which deals with mapping raw time stamped location traces to edges of road network graph. Location data traces may be from devices like GPS, Mobile Signals etc. It has applicability in mining travel patterns, route prediction, vehicle turn prediction and resource prediction in grid computing etc. Existing map matching algorithms are designed to run on vertical scalable frameworks (enhancing CPU, Disk storage, Network Resources etc.). Vertical scaling has known limitations and implementation difficulties. In this paper we present a framework for horizontal scaling of map-matching algorithm, which overcomes limitations of vertical scaling. This framework uses Hbase for data storage and map-reduce computation framework. Both of these technologies belong to big data technology stack. Proposed framework is evaluated by running ST-matching based map matching algorithm.","PeriodicalId":6486,"journal":{"name":"2014 17th International Conference on Computer and Information Technology (ICCIT)","volume":"1 1","pages":"30-34"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Framework for Horizontal Scaling of Map Matching: Using Map-Reduce\",\"authors\":\"V. Tiwari, Arti Arya, Sudha Chaturvedi\",\"doi\":\"10.1109/ICIT.2014.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Map Matching is a well-established problem which deals with mapping raw time stamped location traces to edges of road network graph. Location data traces may be from devices like GPS, Mobile Signals etc. It has applicability in mining travel patterns, route prediction, vehicle turn prediction and resource prediction in grid computing etc. Existing map matching algorithms are designed to run on vertical scalable frameworks (enhancing CPU, Disk storage, Network Resources etc.). Vertical scaling has known limitations and implementation difficulties. In this paper we present a framework for horizontal scaling of map-matching algorithm, which overcomes limitations of vertical scaling. This framework uses Hbase for data storage and map-reduce computation framework. Both of these technologies belong to big data technology stack. Proposed framework is evaluated by running ST-matching based map matching algorithm.\",\"PeriodicalId\":6486,\"journal\":{\"name\":\"2014 17th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"1 1\",\"pages\":\"30-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 17th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2014.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 17th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

地图匹配是将原始时间标记的位置轨迹映射到路网图边缘的一个成熟问题。位置数据跟踪可能来自GPS、移动信号等设备。在网格计算中的出行模式挖掘、路线预测、车辆转弯预测、资源预测等方面具有一定的适用性。现有的映射匹配算法被设计为在垂直可扩展框架上运行(增强CPU,磁盘存储,网络资源等)。垂直扩展具有已知的限制和实现困难。本文提出了一种地图匹配算法的水平缩放框架,克服了垂直缩放的局限性。该框架使用Hbase作为数据存储和map-reduce计算框架。这两种技术都属于大数据技术栈。通过运行基于st匹配的映射匹配算法对所提出的框架进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Framework for Horizontal Scaling of Map Matching: Using Map-Reduce
Map Matching is a well-established problem which deals with mapping raw time stamped location traces to edges of road network graph. Location data traces may be from devices like GPS, Mobile Signals etc. It has applicability in mining travel patterns, route prediction, vehicle turn prediction and resource prediction in grid computing etc. Existing map matching algorithms are designed to run on vertical scalable frameworks (enhancing CPU, Disk storage, Network Resources etc.). Vertical scaling has known limitations and implementation difficulties. In this paper we present a framework for horizontal scaling of map-matching algorithm, which overcomes limitations of vertical scaling. This framework uses Hbase for data storage and map-reduce computation framework. Both of these technologies belong to big data technology stack. Proposed framework is evaluated by running ST-matching based map matching algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android IR - Full-Text Search for Android Impurity Measurement in Selecting Decision Node Tree that Tolerate Noisy Cases A Comparative Study of IXP in Europe and US from a Complex Network Perspective Ensemble Features Selection Algorithm by Considering Features Ranking Priority User Independency of SSVEP Based Brain Computer Interface Using ANN Classifier: Statistical Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1