{"title":"用蒙特卡罗代码OpenMC对欧洲钠冷快堆进行中子分析","authors":"Md. Ariful Islam","doi":"10.1515/kern-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract The sodium-cooled fast reactor is a Generation-IV International Forum recommended technology, with an aim to improve sustainability, safety, and proliferation resistance. To ensure accurate reactor physics calculation and safety analyses, nuclear data libraries require continuous improvement through modifications based on additional measurements, evaluations, and validation studies with criticality experiments. In this work the Sodium-cooled Fast Reactor Uncertainty Analysis in Modeling (SFR-UAM) benchmark served as a basis to assess differences in nuclear data libraries and estimate variability in criticality and power distribution results. The research has been carried out using the OpenMC code and the study presented here covers two SFR models: MOX-3600 and ABR-1000. The neutronic calculation of numerous parameters in fast spectrum systems including effective multiplication factor (keff), effective delayed neutron fraction (βeff), sodium void reactivity (ΔρNa), Doppler constant (ΔρDoppler), and control rod (ρCR) worth were calculated and compared mainly to five libraries: ENDF/B-VII.1, ENDF/B-VIII, JEFF-3.3, JENDL-4.0 and TENDL-2019. In addition, sensitivity calculations using GPT-free method were conducted to understand relevant sensitivities for a given quantity of interest in major isotope/reaction pairs. The major driver of observed uncertainty in keff are found for the high actinide isotopes mainly capture cross section of 239, 240Pu as well as fission reaction of 239Pu.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"36 1","pages":"399 - 412"},"PeriodicalIF":0.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutronic analysis of the European sodium cooled fast reactor with Monte Carlo code OpenMC\",\"authors\":\"Md. Ariful Islam\",\"doi\":\"10.1515/kern-2023-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The sodium-cooled fast reactor is a Generation-IV International Forum recommended technology, with an aim to improve sustainability, safety, and proliferation resistance. To ensure accurate reactor physics calculation and safety analyses, nuclear data libraries require continuous improvement through modifications based on additional measurements, evaluations, and validation studies with criticality experiments. In this work the Sodium-cooled Fast Reactor Uncertainty Analysis in Modeling (SFR-UAM) benchmark served as a basis to assess differences in nuclear data libraries and estimate variability in criticality and power distribution results. The research has been carried out using the OpenMC code and the study presented here covers two SFR models: MOX-3600 and ABR-1000. The neutronic calculation of numerous parameters in fast spectrum systems including effective multiplication factor (keff), effective delayed neutron fraction (βeff), sodium void reactivity (ΔρNa), Doppler constant (ΔρDoppler), and control rod (ρCR) worth were calculated and compared mainly to five libraries: ENDF/B-VII.1, ENDF/B-VIII, JEFF-3.3, JENDL-4.0 and TENDL-2019. In addition, sensitivity calculations using GPT-free method were conducted to understand relevant sensitivities for a given quantity of interest in major isotope/reaction pairs. The major driver of observed uncertainty in keff are found for the high actinide isotopes mainly capture cross section of 239, 240Pu as well as fission reaction of 239Pu.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\"36 1\",\"pages\":\"399 - 412\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2023-0016\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2023-0016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Neutronic analysis of the European sodium cooled fast reactor with Monte Carlo code OpenMC
Abstract The sodium-cooled fast reactor is a Generation-IV International Forum recommended technology, with an aim to improve sustainability, safety, and proliferation resistance. To ensure accurate reactor physics calculation and safety analyses, nuclear data libraries require continuous improvement through modifications based on additional measurements, evaluations, and validation studies with criticality experiments. In this work the Sodium-cooled Fast Reactor Uncertainty Analysis in Modeling (SFR-UAM) benchmark served as a basis to assess differences in nuclear data libraries and estimate variability in criticality and power distribution results. The research has been carried out using the OpenMC code and the study presented here covers two SFR models: MOX-3600 and ABR-1000. The neutronic calculation of numerous parameters in fast spectrum systems including effective multiplication factor (keff), effective delayed neutron fraction (βeff), sodium void reactivity (ΔρNa), Doppler constant (ΔρDoppler), and control rod (ρCR) worth were calculated and compared mainly to five libraries: ENDF/B-VII.1, ENDF/B-VIII, JEFF-3.3, JENDL-4.0 and TENDL-2019. In addition, sensitivity calculations using GPT-free method were conducted to understand relevant sensitivities for a given quantity of interest in major isotope/reaction pairs. The major driver of observed uncertainty in keff are found for the high actinide isotopes mainly capture cross section of 239, 240Pu as well as fission reaction of 239Pu.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).