发泡环氧氨基甲酸酯:不同纯胺对流变学和细胞形态的影响

IF 3.2 4区 工程技术 Q2 CHEMISTRY, APPLIED Journal of Cellular Plastics Pub Date : 2023-03-23 DOI:10.1177/0021955X231166007
Ngoc Uy Lan Du, C. Bethke, Shuaiping Gong, V. Altstaedt, Holger Ruckdaeschel
{"title":"发泡环氧氨基甲酸酯:不同纯胺对流变学和细胞形态的影响","authors":"Ngoc Uy Lan Du, C. Bethke, Shuaiping Gong, V. Altstaedt, Holger Ruckdaeschel","doi":"10.1177/0021955X231166007","DOIUrl":null,"url":null,"abstract":"The use of carbamate to foam epoxy depends significantly on the precured modulus to stabilize the cellular structure. The optimum precured modulus is developed from the reaction of epoxy resin and the neat amine. The selection of the neat amine relies on its reaction temperature with epoxy, which is required to be below the decomposition temperature of carbamate. This study investigates the effect of three different neat amines on the rheological behavior of foaming epoxy-carbamate-amine. They are bisphenol-A diglycidyl ether epoxy (DGEBA), isophorone diamine carbamate (IDPA.CO2), N-aminoethylpiperazine (AEP), 2,4-Diamino-1-methyl-cyclohexan (DMC) and isophorone diamine (IDPA). The mixtures of DGEBA-amine-carbamate are filled in 25% and 75% of the volume of a closed mold. Precuring is carried out at 60°C for 2 h. The foaming and complete curing are conducted at 180°C for 1 h. Having H-active at piperazine, AEP reacts with DGEBA faster and develops a higher precured modulus compared to DMC and IDPA. It is important to note that DGEBA-AEP-IDPA.CO2 exhibits viscoelastic behavior beyond 138°C, seen by its rheological storage modulus lower than loss modulus and its tan delta larger than 1. The reaction between DGEBA and the H-active piperazine of AEP leads only to linear linkage and is unable to further crosslink compared to the primary amine (-NH2). This results in a lower glass transition temperature Tg of DGEBA-AEP-IPDA.CO2. The effect of amine on foaming is more obviously at 25% filling level. DGEBA-AEP-IPDA.CO2 has more spherical and homogeneous cellular structure and the density of 285 kg/m3. Having quite similar chemical structure, both DGEBA-DMC-IPDA.CO2 and DGEBA-IPDA-IPDA.CO2 produce the epoxy foams having cell-interconnection and coalescence; their densities are also similar 301 kg/m3 and 305 kg/m3, respectively. All the foams are closed-cell at 75% of filling level. The cell morphologies are well reflecting the foaming modulus and tan delta behavior.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"35 1","pages":"231 - 247"},"PeriodicalIF":3.2000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foaming epoxy-amine-carbamate: The effect of different neat amines on rheological and cellular morphology\",\"authors\":\"Ngoc Uy Lan Du, C. Bethke, Shuaiping Gong, V. Altstaedt, Holger Ruckdaeschel\",\"doi\":\"10.1177/0021955X231166007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of carbamate to foam epoxy depends significantly on the precured modulus to stabilize the cellular structure. The optimum precured modulus is developed from the reaction of epoxy resin and the neat amine. The selection of the neat amine relies on its reaction temperature with epoxy, which is required to be below the decomposition temperature of carbamate. This study investigates the effect of three different neat amines on the rheological behavior of foaming epoxy-carbamate-amine. They are bisphenol-A diglycidyl ether epoxy (DGEBA), isophorone diamine carbamate (IDPA.CO2), N-aminoethylpiperazine (AEP), 2,4-Diamino-1-methyl-cyclohexan (DMC) and isophorone diamine (IDPA). The mixtures of DGEBA-amine-carbamate are filled in 25% and 75% of the volume of a closed mold. Precuring is carried out at 60°C for 2 h. The foaming and complete curing are conducted at 180°C for 1 h. Having H-active at piperazine, AEP reacts with DGEBA faster and develops a higher precured modulus compared to DMC and IDPA. It is important to note that DGEBA-AEP-IDPA.CO2 exhibits viscoelastic behavior beyond 138°C, seen by its rheological storage modulus lower than loss modulus and its tan delta larger than 1. The reaction between DGEBA and the H-active piperazine of AEP leads only to linear linkage and is unable to further crosslink compared to the primary amine (-NH2). This results in a lower glass transition temperature Tg of DGEBA-AEP-IPDA.CO2. The effect of amine on foaming is more obviously at 25% filling level. DGEBA-AEP-IPDA.CO2 has more spherical and homogeneous cellular structure and the density of 285 kg/m3. Having quite similar chemical structure, both DGEBA-DMC-IPDA.CO2 and DGEBA-IPDA-IPDA.CO2 produce the epoxy foams having cell-interconnection and coalescence; their densities are also similar 301 kg/m3 and 305 kg/m3, respectively. All the foams are closed-cell at 75% of filling level. The cell morphologies are well reflecting the foaming modulus and tan delta behavior.\",\"PeriodicalId\":15236,\"journal\":{\"name\":\"Journal of Cellular Plastics\",\"volume\":\"35 1\",\"pages\":\"231 - 247\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Plastics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0021955X231166007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X231166007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

氨基甲酸酯泡沫环氧树脂的使用在很大程度上取决于固化模量来稳定细胞结构。通过环氧树脂与纯胺的反应,得到了最佳的预制模量。纯胺的选择取决于其与环氧树脂的反应温度,要求低于氨基甲酸酯的分解温度。研究了三种不同的纯胺对环氧氨基甲酸酯胺泡沫的流变性能的影响。它们是双酚-a -二缩水甘油醚环氧树脂(DGEBA)、异佛罗酮二胺氨基甲酸酯(IDPA. co2)、n -氨基乙基哌嗪(AEP)、2,4-二氨基-1-甲基环己烷(DMC)和异佛罗酮二胺(IDPA)。将dgeba -氨基甲酸酯混合物填充在封闭模具体积的25%和75%中。预固化在60℃下进行2 h,在180℃下进行起泡和完全固化1 h。由于h对哌嗪具有活性,与DMC和IDPA相比,AEP与DGEBA反应更快,具有更高的预固化模量。值得注意的是,DGEBA-AEP-IDPA。138℃以上CO2表现出粘弹性,其流变储存模量低于损耗模量,且tan δ大于1。与伯胺(-NH2)相比,DGEBA与AEP的h -活性哌嗪之间的反应仅形成线性连锁,不能进一步交联。这使得DGEBA-AEP-IPDA.CO2的玻璃化转变温度Tg较低。在填充量为25%时,胺对泡沫的影响更为明显。DGEBA-AEP-IPDA。CO2的胞状结构较为球形均匀,密度为285 kg/m3。具有非常相似的化学结构,都是DGEBA-DMC-IPDA。CO2和DGEBA-IPDA-IPDA。CO2产生的环氧泡沫具有胞间互连和聚结性;它们的密度也相似,分别为301 kg/m3和305 kg/m3。在填充量的75%时,所有泡沫都是闭孔的。细胞形态很好地反映了泡沫模量和tan δ行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Foaming epoxy-amine-carbamate: The effect of different neat amines on rheological and cellular morphology
The use of carbamate to foam epoxy depends significantly on the precured modulus to stabilize the cellular structure. The optimum precured modulus is developed from the reaction of epoxy resin and the neat amine. The selection of the neat amine relies on its reaction temperature with epoxy, which is required to be below the decomposition temperature of carbamate. This study investigates the effect of three different neat amines on the rheological behavior of foaming epoxy-carbamate-amine. They are bisphenol-A diglycidyl ether epoxy (DGEBA), isophorone diamine carbamate (IDPA.CO2), N-aminoethylpiperazine (AEP), 2,4-Diamino-1-methyl-cyclohexan (DMC) and isophorone diamine (IDPA). The mixtures of DGEBA-amine-carbamate are filled in 25% and 75% of the volume of a closed mold. Precuring is carried out at 60°C for 2 h. The foaming and complete curing are conducted at 180°C for 1 h. Having H-active at piperazine, AEP reacts with DGEBA faster and develops a higher precured modulus compared to DMC and IDPA. It is important to note that DGEBA-AEP-IDPA.CO2 exhibits viscoelastic behavior beyond 138°C, seen by its rheological storage modulus lower than loss modulus and its tan delta larger than 1. The reaction between DGEBA and the H-active piperazine of AEP leads only to linear linkage and is unable to further crosslink compared to the primary amine (-NH2). This results in a lower glass transition temperature Tg of DGEBA-AEP-IPDA.CO2. The effect of amine on foaming is more obviously at 25% filling level. DGEBA-AEP-IPDA.CO2 has more spherical and homogeneous cellular structure and the density of 285 kg/m3. Having quite similar chemical structure, both DGEBA-DMC-IPDA.CO2 and DGEBA-IPDA-IPDA.CO2 produce the epoxy foams having cell-interconnection and coalescence; their densities are also similar 301 kg/m3 and 305 kg/m3, respectively. All the foams are closed-cell at 75% of filling level. The cell morphologies are well reflecting the foaming modulus and tan delta behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cellular Plastics
Journal of Cellular Plastics 工程技术-高分子科学
CiteScore
5.00
自引率
16.00%
发文量
19
审稿时长
3 months
期刊介绍: The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.
期刊最新文献
I-WP geometry structural assessment: A theoretical, experimental, and numerical analysis Foam density measurement using a 3D scanner Effect of temperature on the mechanical behavior of pvc foams Preparation and energy absorption of flexible polyurethane foam with hollow glass microsphere A review on the mechanical behaviour of microcellular and nanocellular polymeric foams: What is the effect of the cell size reduction?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1