超短脉冲激光辐照后氧化锆的表面表征及短期粘附。

M. Esteves-Oliveira, P. Jansen, M. Wehner, A. Dohrn, M. BeLLO-siLva, C. P. Eduardo, H. Meyer-Lueckel
{"title":"超短脉冲激光辐照后氧化锆的表面表征及短期粘附。","authors":"M. Esteves-Oliveira, P. Jansen, M. Wehner, A. Dohrn, M. BeLLO-siLva, C. P. Eduardo, H. Meyer-Lueckel","doi":"10.3290/j.jad.a36918","DOIUrl":null,"url":null,"abstract":"PURPOSE To evaluate the suitability of an ultra-short pulsed laser (USPL) to treat zirconia ceramic surfaces and increase their adhesion to dual-curing resin cement. MATERIALS AND METHODS Twenty 10 × 10 × 5 mm³ blocks were prepared from a zirconia ceramic (Y-TZP). The specimens were polished and randomly assigned to four groups (n = 5) which received the following surface treatments: sandblasting (SB) with Al₂O₃ particles and silica coating (SC) with SiO₂ particles as positive controls; two groups received USPL irradiation, one with 10 scan repetitions (L10) and the other with 20 (L20). Laser irradiation was performed at 1030 nm, 2.3 J/cm², 6 ps pulse duration. The ceramic blocks were duplicated in composite resin and cemented with a dual-curing resin cement. Half of the blocks were then stored in water (37°C) for 24 h and the other half for 1 month. At each time, 40 to 60 sticks per group were subjected to microtensile bond strength testing. Data were analyzed statistically using the Kruskal-Wallis test (α = 0.05). RESULTS Laser-treated zirconia presented statistically significantly higher roughness than did SB and SC. After 24 h, the highest bond strength means (MPa) were achieved by L10 (42.3 ± 10.8) and L20 (37.9 ± 14.4), and both of them were statistically significantly higher than SB (22.0 ± 5.3) and SC (20.8 ± 7.1) (p < 0.05). After 1 month of storage, L10- and L20-treated zirconia still showed significantly higher bond strengths than did SB- and SC-treated zirconia (p < 0.05). CONCLUSION USPL irradiation significantly increases bond strength of zirconia ceramic to dual-curing resin cement and might be an alternative for improving adhesion to this material.","PeriodicalId":94234,"journal":{"name":"The journal of adhesive dentistry","volume":"24 1","pages":"483-492"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Surface Characterization and Short-term Adhesion to Zirconia after Ultra-short Pulsed Laser Irradiation.\",\"authors\":\"M. Esteves-Oliveira, P. Jansen, M. Wehner, A. Dohrn, M. BeLLO-siLva, C. P. Eduardo, H. Meyer-Lueckel\",\"doi\":\"10.3290/j.jad.a36918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE To evaluate the suitability of an ultra-short pulsed laser (USPL) to treat zirconia ceramic surfaces and increase their adhesion to dual-curing resin cement. MATERIALS AND METHODS Twenty 10 × 10 × 5 mm³ blocks were prepared from a zirconia ceramic (Y-TZP). The specimens were polished and randomly assigned to four groups (n = 5) which received the following surface treatments: sandblasting (SB) with Al₂O₃ particles and silica coating (SC) with SiO₂ particles as positive controls; two groups received USPL irradiation, one with 10 scan repetitions (L10) and the other with 20 (L20). Laser irradiation was performed at 1030 nm, 2.3 J/cm², 6 ps pulse duration. The ceramic blocks were duplicated in composite resin and cemented with a dual-curing resin cement. Half of the blocks were then stored in water (37°C) for 24 h and the other half for 1 month. At each time, 40 to 60 sticks per group were subjected to microtensile bond strength testing. Data were analyzed statistically using the Kruskal-Wallis test (α = 0.05). RESULTS Laser-treated zirconia presented statistically significantly higher roughness than did SB and SC. After 24 h, the highest bond strength means (MPa) were achieved by L10 (42.3 ± 10.8) and L20 (37.9 ± 14.4), and both of them were statistically significantly higher than SB (22.0 ± 5.3) and SC (20.8 ± 7.1) (p < 0.05). After 1 month of storage, L10- and L20-treated zirconia still showed significantly higher bond strengths than did SB- and SC-treated zirconia (p < 0.05). CONCLUSION USPL irradiation significantly increases bond strength of zirconia ceramic to dual-curing resin cement and might be an alternative for improving adhesion to this material.\",\"PeriodicalId\":94234,\"journal\":{\"name\":\"The journal of adhesive dentistry\",\"volume\":\"24 1\",\"pages\":\"483-492\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of adhesive dentistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3290/j.jad.a36918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of adhesive dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3290/j.jad.a36918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

目的评价超短脉冲激光(USPL)对氧化锆陶瓷表面处理的适用性,提高其与双固化树脂水泥的附着力。材料与方法用氧化锆陶瓷(Y-TZP)制备了20个10 × 10 × 5 mm³的块体。将样品抛光并随机分为四组(n = 5),每组接受以下表面处理:用Al₂O₃颗粒喷砂(SB)和用SiO₂颗粒作为阳性对照的二氧化硅涂层(SC);两组接受USPL照射,一组扫描次数为10次(L10),另一组为20次(L20)。激光照射波长为1030 nm, 2.3 J/cm²,脉冲持续时间为6 ps。在复合树脂中复制陶瓷块,并用双固化树脂水泥进行胶结。一半的细胞块在37°C的水中保存24小时,另一半保存1个月。每次每组40 ~ 60根进行微拉伸粘结强度测试。数据采用Kruskal-Wallis检验进行统计学分析(α = 0.05)。结果激光处理后的氧化锆表面粗糙度明显高于SB和SC, 24 h后,L10(42.3±10.8)和L20(37.9±14.4)的结合强度平均值(MPa)最高,均高于SB(22.0±5.3)和SC(20.8±7.1)(p < 0.05)。保存1个月后,L10和l20处理的氧化锆的结合力仍显著高于SB和sc处理的氧化锆(p < 0.05)。结论uspl辐照可显著提高氧化锆陶瓷与双固化树脂水泥的结合强度,可作为提高氧化锆陶瓷与双固化树脂水泥结合强度的一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface Characterization and Short-term Adhesion to Zirconia after Ultra-short Pulsed Laser Irradiation.
PURPOSE To evaluate the suitability of an ultra-short pulsed laser (USPL) to treat zirconia ceramic surfaces and increase their adhesion to dual-curing resin cement. MATERIALS AND METHODS Twenty 10 × 10 × 5 mm³ blocks were prepared from a zirconia ceramic (Y-TZP). The specimens were polished and randomly assigned to four groups (n = 5) which received the following surface treatments: sandblasting (SB) with Al₂O₃ particles and silica coating (SC) with SiO₂ particles as positive controls; two groups received USPL irradiation, one with 10 scan repetitions (L10) and the other with 20 (L20). Laser irradiation was performed at 1030 nm, 2.3 J/cm², 6 ps pulse duration. The ceramic blocks were duplicated in composite resin and cemented with a dual-curing resin cement. Half of the blocks were then stored in water (37°C) for 24 h and the other half for 1 month. At each time, 40 to 60 sticks per group were subjected to microtensile bond strength testing. Data were analyzed statistically using the Kruskal-Wallis test (α = 0.05). RESULTS Laser-treated zirconia presented statistically significantly higher roughness than did SB and SC. After 24 h, the highest bond strength means (MPa) were achieved by L10 (42.3 ± 10.8) and L20 (37.9 ± 14.4), and both of them were statistically significantly higher than SB (22.0 ± 5.3) and SC (20.8 ± 7.1) (p < 0.05). After 1 month of storage, L10- and L20-treated zirconia still showed significantly higher bond strengths than did SB- and SC-treated zirconia (p < 0.05). CONCLUSION USPL irradiation significantly increases bond strength of zirconia ceramic to dual-curing resin cement and might be an alternative for improving adhesion to this material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Long-term Survival Rate and Clinical Quality of Individually Layered Indirect Composite Restorations in Adolescents and Young Adults. A Novel Graphite Fluoride/Bioactive Glass-containing Orthodontic Primer with Antibacterial and Remineralization Properties: An In-vitro Study. Can Orthodontic Adhesive Systems Inhibit the Formation and Development of White Spot Lesions During Fixed Orthodontic Treatment? A Systematic Review. Morphological Analysis and Bond Strength to Root Canal Dentin of Endodontically Treated and Retreated Teeth: An Ex Vivo Study. Three-Dimensional Internal Voids and Marginal Adaptation in Deep Margin Elevation Technique: Efficiency of Highly Filled Flowable Composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1