基于改进局部分形维数的图像边缘检测

Chen Feng, Guangrong Ji, Junna Cheng, Xuefeng Liu, Jie Zhang
{"title":"基于改进局部分形维数的图像边缘检测","authors":"Chen Feng, Guangrong Ji, Junna Cheng, Xuefeng Liu, Jie Zhang","doi":"10.1109/ICNC.2008.447","DOIUrl":null,"url":null,"abstract":"This paper presents an improved method for estimating the local fractal dimension. The bright points in the local fractal dimension (LFD) map image derived from previous method may influence the effect of edge detection. To solve this problem, we use 0 as the replaced value to supplement the values which do not exist. At the same time, based on the improved local fractal dimension we have furthermore proposed an edge detection method according to the difference between two LFD map images which are computed using local windows of different sizes. The experimental results have proved the effectiveness of our method.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"39 1","pages":"640-643"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image Edge Detection Based on Improved Local Fractal Dimension\",\"authors\":\"Chen Feng, Guangrong Ji, Junna Cheng, Xuefeng Liu, Jie Zhang\",\"doi\":\"10.1109/ICNC.2008.447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved method for estimating the local fractal dimension. The bright points in the local fractal dimension (LFD) map image derived from previous method may influence the effect of edge detection. To solve this problem, we use 0 as the replaced value to supplement the values which do not exist. At the same time, based on the improved local fractal dimension we have furthermore proposed an edge detection method according to the difference between two LFD map images which are computed using local windows of different sizes. The experimental results have proved the effectiveness of our method.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"39 1\",\"pages\":\"640-643\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种改进的局部分形维数估计方法。先前方法得到的局部分形维数(LFD)地图图像中的亮点会影响边缘检测的效果。为了解决这个问题,我们使用0作为替换值来补充不存在的值。同时,在改进的局部分形维数的基础上,进一步提出了一种利用不同大小的局部窗口计算两幅LFD地图图像之间的差异进行边缘检测的方法。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Edge Detection Based on Improved Local Fractal Dimension
This paper presents an improved method for estimating the local fractal dimension. The bright points in the local fractal dimension (LFD) map image derived from previous method may influence the effect of edge detection. To solve this problem, we use 0 as the replaced value to supplement the values which do not exist. At the same time, based on the improved local fractal dimension we have furthermore proposed an edge detection method according to the difference between two LFD map images which are computed using local windows of different sizes. The experimental results have proved the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Level Content-Based Endoscope Image Retrieval A New PSO Scheduling Simulation Algorithm Based on an Intelligent Compensation Particle Position Rounding off Genetic Algorithm with an Application to Complex Portfolio Selection Some Operations of L-Fuzzy Approximate Spaces On Residuated Lattices Image Edge Detection Based on Improved Local Fractal Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1