{"title":"具有广义接受准则的有限自动机","authors":"Timo Peichl, H. Vollmer","doi":"10.46298/dmtcs.287","DOIUrl":null,"url":null,"abstract":"We examine the power of nondeterministic finite automata with acceptance of an input word defined by a leaf language, i.e., a condition on the sequence of leaves in the automaton's computation tree. We study leaf languages either taken from one of the classes of the Chomsky hierarchy, or taken from a time- or space-bounded complexity class. We contrast the obtained results with those known for leaf languages for Turing machines and Boolean circuits.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"1999-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Finite Automata with Generalized Acceptance Criteria\",\"authors\":\"Timo Peichl, H. Vollmer\",\"doi\":\"10.46298/dmtcs.287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the power of nondeterministic finite automata with acceptance of an input word defined by a leaf language, i.e., a condition on the sequence of leaves in the automaton's computation tree. We study leaf languages either taken from one of the classes of the Chomsky hierarchy, or taken from a time- or space-bounded complexity class. We contrast the obtained results with those known for leaf languages for Turing machines and Boolean circuits.\",\"PeriodicalId\":55175,\"journal\":{\"name\":\"Discrete Mathematics and Theoretical Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"1999-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Theoretical Computer Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.287\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.46298/dmtcs.287","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Automata with Generalized Acceptance Criteria
We examine the power of nondeterministic finite automata with acceptance of an input word defined by a leaf language, i.e., a condition on the sequence of leaves in the automaton's computation tree. We study leaf languages either taken from one of the classes of the Chomsky hierarchy, or taken from a time- or space-bounded complexity class. We contrast the obtained results with those known for leaf languages for Turing machines and Boolean circuits.
期刊介绍:
DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network.
Sections of DMTCS
Analysis of Algorithms
Automata, Logic and Semantics
Combinatorics
Discrete Algorithms
Distributed Computing and Networking
Graph Theory.