{"title":"折现Hamilton-Jacobi方程奇异性的全局传播","authors":"Cui Chen, Jiahui Hong, K. Zhao","doi":"10.3934/dcds.2021179","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The main purpose of this paper is to study the global propagation of singularities of the viscosity solution to discounted Hamilton-Jacobi equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE333\"> \\begin{document}$ \\begin{align} \\lambda v(x)+H( x, Dv(x) ) = 0 , \\quad x\\in \\mathbb{R}^n. \\quad\\quad\\quad (\\mathrm{HJ}_{\\lambda})\\end{align} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with fixed constant <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\lambda\\in \\mathbb{R}^+ $\\end{document}</tex-math></inline-formula>. We reduce the problem for equation <inline-formula><tex-math id=\"M2\">\\begin{document}$(\\mathrm{HJ}_{\\lambda})$\\end{document}</tex-math></inline-formula> into that for a time-dependent evolutionary Hamilton-Jacobi equation. We prove that the singularities of the viscosity solution of <inline-formula><tex-math id=\"M3\">\\begin{document}$(\\mathrm{HJ}_{\\lambda})$\\end{document}</tex-math></inline-formula> propagate along locally Lipschitz singular characteristics <inline-formula><tex-math id=\"M4\">\\begin{document}$ {{\\bf{x}}}(s):[0,t]\\to \\mathbb{R}^n $\\end{document}</tex-math></inline-formula> and time <inline-formula><tex-math id=\"M5\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> can extend to <inline-formula><tex-math id=\"M6\">\\begin{document}$ +\\infty $\\end{document}</tex-math></inline-formula>. Essentially, we use <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\sigma $\\end{document}</tex-math></inline-formula>-compactness of the Euclidean space which is different from the original construction in [<xref ref-type=\"bibr\" rid=\"b4\">4</xref>]. The local Lipschitz issue is a key technical difficulty to study the global result. As a application, we also obtain the homotopy equivalence between the singular locus of <inline-formula><tex-math id=\"M8\">\\begin{document}$ u $\\end{document}</tex-math></inline-formula> and the complement of Aubry set using the basic idea from [<xref ref-type=\"bibr\" rid=\"b9\">9</xref>].</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global propagation of singularities for discounted Hamilton-Jacobi equations\",\"authors\":\"Cui Chen, Jiahui Hong, K. Zhao\",\"doi\":\"10.3934/dcds.2021179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>The main purpose of this paper is to study the global propagation of singularities of the viscosity solution to discounted Hamilton-Jacobi equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE333\\\"> \\\\begin{document}$ \\\\begin{align} \\\\lambda v(x)+H( x, Dv(x) ) = 0 , \\\\quad x\\\\in \\\\mathbb{R}^n. \\\\quad\\\\quad\\\\quad (\\\\mathrm{HJ}_{\\\\lambda})\\\\end{align} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with fixed constant <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\lambda\\\\in \\\\mathbb{R}^+ $\\\\end{document}</tex-math></inline-formula>. We reduce the problem for equation <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$(\\\\mathrm{HJ}_{\\\\lambda})$\\\\end{document}</tex-math></inline-formula> into that for a time-dependent evolutionary Hamilton-Jacobi equation. We prove that the singularities of the viscosity solution of <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$(\\\\mathrm{HJ}_{\\\\lambda})$\\\\end{document}</tex-math></inline-formula> propagate along locally Lipschitz singular characteristics <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ {{\\\\bf{x}}}(s):[0,t]\\\\to \\\\mathbb{R}^n $\\\\end{document}</tex-math></inline-formula> and time <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula> can extend to <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ +\\\\infty $\\\\end{document}</tex-math></inline-formula>. Essentially, we use <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\sigma $\\\\end{document}</tex-math></inline-formula>-compactness of the Euclidean space which is different from the original construction in [<xref ref-type=\\\"bibr\\\" rid=\\\"b4\\\">4</xref>]. The local Lipschitz issue is a key technical difficulty to study the global result. As a application, we also obtain the homotopy equivalence between the singular locus of <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ u $\\\\end{document}</tex-math></inline-formula> and the complement of Aubry set using the basic idea from [<xref ref-type=\\\"bibr\\\" rid=\\\"b9\\\">9</xref>].</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
The main purpose of this paper is to study the global propagation of singularities of the viscosity solution to discounted Hamilton-Jacobi equation \begin{document}$ \begin{align} \lambda v(x)+H( x, Dv(x) ) = 0 , \quad x\in \mathbb{R}^n. \quad\quad\quad (\mathrm{HJ}_{\lambda})\end{align} $\end{document} with fixed constant \begin{document}$ \lambda\in \mathbb{R}^+ $\end{document}. We reduce the problem for equation \begin{document}$(\mathrm{HJ}_{\lambda})$\end{document} into that for a time-dependent evolutionary Hamilton-Jacobi equation. We prove that the singularities of the viscosity solution of \begin{document}$(\mathrm{HJ}_{\lambda})$\end{document} propagate along locally Lipschitz singular characteristics \begin{document}$ {{\bf{x}}}(s):[0,t]\to \mathbb{R}^n $\end{document} and time \begin{document}$ t $\end{document} can extend to \begin{document}$ +\infty $\end{document}. Essentially, we use \begin{document}$ \sigma $\end{document}-compactness of the Euclidean space which is different from the original construction in [4]. The local Lipschitz issue is a key technical difficulty to study the global result. As a application, we also obtain the homotopy equivalence between the singular locus of \begin{document}$ u $\end{document} and the complement of Aubry set using the basic idea from [9].
with fixed constant \begin{document}$ \lambda\in \mathbb{R}^+ $\end{document}. We reduce the problem for equation \begin{document}$(\mathrm{HJ}_{\lambda})$\end{document} into that for a time-dependent evolutionary Hamilton-Jacobi equation. We prove that the singularities of the viscosity solution of \begin{document}$(\mathrm{HJ}_{\lambda})$\end{document} propagate along locally Lipschitz singular characteristics \begin{document}$ {{\bf{x}}}(s):[0,t]\to \mathbb{R}^n $\end{document} and time \begin{document}$ t $\end{document} can extend to \begin{document}$ +\infty $\end{document}. Essentially, we use \begin{document}$ \sigma $\end{document}-compactness of the Euclidean space which is different from the original construction in [4]. The local Lipschitz issue is a key technical difficulty to study the global result. As a application, we also obtain the homotopy equivalence between the singular locus of \begin{document}$ u $\end{document} and the complement of Aubry set using the basic idea from [9].