{"title":"阿萨巴斯卡沥青的破粘及其反应机理","authors":"H. Tominaga, Seiji Itoh, M. Yashiro","doi":"10.1627/JPI1959.19.50","DOIUrl":null,"url":null,"abstract":"Athabasca bitumen was sudjected to thermal cracking at temperatures of 430-520°C in the presence of hydrogen at 50atm. A significant decrease in viscosity and that in the average molecular weight of the bitumen were attained without excessive coke formation. The reaction mechanism was discussed based on the detailed structural analyses of the bitumen and the oil cracked by visbreaking by use of the various methods including GPC, NMR, and elemental analysis.","PeriodicalId":9596,"journal":{"name":"Bulletin of The Japan Petroleum Institute","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1977-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Hydrovisbreaking of Athabasca Bitumen and its Reaction Mechanism\",\"authors\":\"H. Tominaga, Seiji Itoh, M. Yashiro\",\"doi\":\"10.1627/JPI1959.19.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Athabasca bitumen was sudjected to thermal cracking at temperatures of 430-520°C in the presence of hydrogen at 50atm. A significant decrease in viscosity and that in the average molecular weight of the bitumen were attained without excessive coke formation. The reaction mechanism was discussed based on the detailed structural analyses of the bitumen and the oil cracked by visbreaking by use of the various methods including GPC, NMR, and elemental analysis.\",\"PeriodicalId\":9596,\"journal\":{\"name\":\"Bulletin of The Japan Petroleum Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1977-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Japan Petroleum Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1627/JPI1959.19.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Japan Petroleum Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1627/JPI1959.19.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrovisbreaking of Athabasca Bitumen and its Reaction Mechanism
Athabasca bitumen was sudjected to thermal cracking at temperatures of 430-520°C in the presence of hydrogen at 50atm. A significant decrease in viscosity and that in the average molecular weight of the bitumen were attained without excessive coke formation. The reaction mechanism was discussed based on the detailed structural analyses of the bitumen and the oil cracked by visbreaking by use of the various methods including GPC, NMR, and elemental analysis.