Lei Wang, S. Broussy, N. Gagey-Eilstein, M. Reille‐Seroussi, F. Huguenot, M. Vidal, Wang-Qing Liu
{"title":"一系列c端修饰的环肽抑制VEGF/VEGFR1相互作用","authors":"Lei Wang, S. Broussy, N. Gagey-Eilstein, M. Reille‐Seroussi, F. Huguenot, M. Vidal, Wang-Qing Liu","doi":"10.14800/RCI.534","DOIUrl":null,"url":null,"abstract":"Inhibition of the interaction between vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) is a validated therapeutic strategy of anti-cancer treatment. This approach consists in indirect blockage of the kinase activity on VEGFR with inhibitors of protein-protein interactions, which showed great interests in oncology. The FDA approved anti-cancer agents bevacizumab (Avastin®) and ziv-aflibercept (Zaltrap®) bind specifically to VEGF are from anti-VEGF strategy. The very recently approved agent ramucirumab (Cyramza®), a recombinant humanized monoclonal antibody that specifically binds to VEGFR2 is from anti-VEGFR strategy. Based on a cyclic peptide antagonist of VEGFR1 designed from VEGF fragments, we developed, by a new synthesis process, a series of C-terminal modified cyclic peptides to improve their receptor binding ability. Three of such peptides with aromatic groups showed greatly increased VEGFR1 binding affinity in a competition ELISA-based test. This research highlight discusses the processing and findings of the recent study.","PeriodicalId":20980,"journal":{"name":"Receptors and clinical investigation","volume":"24 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of VEGF/VEGFR1 interaction by a series of C-terminal modified cyclic peptides\",\"authors\":\"Lei Wang, S. Broussy, N. Gagey-Eilstein, M. Reille‐Seroussi, F. Huguenot, M. Vidal, Wang-Qing Liu\",\"doi\":\"10.14800/RCI.534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inhibition of the interaction between vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) is a validated therapeutic strategy of anti-cancer treatment. This approach consists in indirect blockage of the kinase activity on VEGFR with inhibitors of protein-protein interactions, which showed great interests in oncology. The FDA approved anti-cancer agents bevacizumab (Avastin®) and ziv-aflibercept (Zaltrap®) bind specifically to VEGF are from anti-VEGF strategy. The very recently approved agent ramucirumab (Cyramza®), a recombinant humanized monoclonal antibody that specifically binds to VEGFR2 is from anti-VEGFR strategy. Based on a cyclic peptide antagonist of VEGFR1 designed from VEGF fragments, we developed, by a new synthesis process, a series of C-terminal modified cyclic peptides to improve their receptor binding ability. Three of such peptides with aromatic groups showed greatly increased VEGFR1 binding affinity in a competition ELISA-based test. This research highlight discusses the processing and findings of the recent study.\",\"PeriodicalId\":20980,\"journal\":{\"name\":\"Receptors and clinical investigation\",\"volume\":\"24 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptors and clinical investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/RCI.534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors and clinical investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/RCI.534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibition of VEGF/VEGFR1 interaction by a series of C-terminal modified cyclic peptides
Inhibition of the interaction between vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) is a validated therapeutic strategy of anti-cancer treatment. This approach consists in indirect blockage of the kinase activity on VEGFR with inhibitors of protein-protein interactions, which showed great interests in oncology. The FDA approved anti-cancer agents bevacizumab (Avastin®) and ziv-aflibercept (Zaltrap®) bind specifically to VEGF are from anti-VEGF strategy. The very recently approved agent ramucirumab (Cyramza®), a recombinant humanized monoclonal antibody that specifically binds to VEGFR2 is from anti-VEGFR strategy. Based on a cyclic peptide antagonist of VEGFR1 designed from VEGF fragments, we developed, by a new synthesis process, a series of C-terminal modified cyclic peptides to improve their receptor binding ability. Three of such peptides with aromatic groups showed greatly increased VEGFR1 binding affinity in a competition ELISA-based test. This research highlight discusses the processing and findings of the recent study.