Xionghui Wang, Jianfang Hu, J. Lai, Jianguo Zhang, Weishi Zheng
{"title":"递进式师生学习促进早期行动预测","authors":"Xionghui Wang, Jianfang Hu, J. Lai, Jianguo Zhang, Weishi Zheng","doi":"10.1109/CVPR.2019.00367","DOIUrl":null,"url":null,"abstract":"The goal of early action prediction is to recognize actions from partially observed videos with incomplete action executions, which is quite different from action recognition. Predicting early actions is very challenging since the partially observed videos do not contain enough action information for recognition. In this paper, we aim at improving early action prediction by proposing a novel teacher-student learning framework. Our framework involves a teacher model for recognizing actions from full videos, a student model for predicting early actions from partial videos, and a teacher-student learning block for distilling progressive knowledge from teacher to student, crossing different tasks. Extensive experiments on three public action datasets show that the proposed progressive teacher-student learning framework can consistently improve performance of early action prediction model. We have also reported the state-of-the-art performances for early action prediction on all of these sets.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"10 1","pages":"3551-3560"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Progressive Teacher-Student Learning for Early Action Prediction\",\"authors\":\"Xionghui Wang, Jianfang Hu, J. Lai, Jianguo Zhang, Weishi Zheng\",\"doi\":\"10.1109/CVPR.2019.00367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of early action prediction is to recognize actions from partially observed videos with incomplete action executions, which is quite different from action recognition. Predicting early actions is very challenging since the partially observed videos do not contain enough action information for recognition. In this paper, we aim at improving early action prediction by proposing a novel teacher-student learning framework. Our framework involves a teacher model for recognizing actions from full videos, a student model for predicting early actions from partial videos, and a teacher-student learning block for distilling progressive knowledge from teacher to student, crossing different tasks. Extensive experiments on three public action datasets show that the proposed progressive teacher-student learning framework can consistently improve performance of early action prediction model. We have also reported the state-of-the-art performances for early action prediction on all of these sets.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"10 1\",\"pages\":\"3551-3560\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Progressive Teacher-Student Learning for Early Action Prediction
The goal of early action prediction is to recognize actions from partially observed videos with incomplete action executions, which is quite different from action recognition. Predicting early actions is very challenging since the partially observed videos do not contain enough action information for recognition. In this paper, we aim at improving early action prediction by proposing a novel teacher-student learning framework. Our framework involves a teacher model for recognizing actions from full videos, a student model for predicting early actions from partial videos, and a teacher-student learning block for distilling progressive knowledge from teacher to student, crossing different tasks. Extensive experiments on three public action datasets show that the proposed progressive teacher-student learning framework can consistently improve performance of early action prediction model. We have also reported the state-of-the-art performances for early action prediction on all of these sets.