局部最大值检测的全自动EM分类算法

T. Lerddararadsamee, Y. Jiraraksopakun
{"title":"局部最大值检测的全自动EM分类算法","authors":"T. Lerddararadsamee, Y. Jiraraksopakun","doi":"10.1109/ECTICON.2012.6254193","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a method for fully-automatic EM segmentation on brain MR images without a priori knowledge. Instead of manually predetermination on number of tissue classes, the proposed method automatically find mean intensities of distinct tissues from the histogram. The brain MR images were chosen to test our proposed method, but our method can, in fact, be general for other MR segmentations using EM with which the Gaussian mixture distribution of an image histogram holds. The results from our method suggested that a fully automatic segmentation using EM can be achieved with no significant difference in segmentation accuracy compared to the conventional EM.","PeriodicalId":6319,"journal":{"name":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"197 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Local maximum detection for fully automatic classification of EM algorithm\",\"authors\":\"T. Lerddararadsamee, Y. Jiraraksopakun\",\"doi\":\"10.1109/ECTICON.2012.6254193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a method for fully-automatic EM segmentation on brain MR images without a priori knowledge. Instead of manually predetermination on number of tissue classes, the proposed method automatically find mean intensities of distinct tissues from the histogram. The brain MR images were chosen to test our proposed method, but our method can, in fact, be general for other MR segmentations using EM with which the Gaussian mixture distribution of an image histogram holds. The results from our method suggested that a fully automatic segmentation using EM can be achieved with no significant difference in segmentation accuracy compared to the conventional EM.\",\"PeriodicalId\":6319,\"journal\":{\"name\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"volume\":\"197 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2012.6254193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2012.6254193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种无需先验知识的全自动脑磁共振图像分割方法。该方法不需要人工预先确定组织类别的数量,而是从直方图中自动找到不同组织的平均强度。选择脑磁共振图像来测试我们提出的方法,但实际上,我们的方法可以用于使用图像直方图的高斯混合分布的EM的其他MR分割。结果表明,与传统EM相比,使用EM可以实现全自动分割,而分割精度没有显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local maximum detection for fully automatic classification of EM algorithm
In this paper, we proposed a method for fully-automatic EM segmentation on brain MR images without a priori knowledge. Instead of manually predetermination on number of tissue classes, the proposed method automatically find mean intensities of distinct tissues from the histogram. The brain MR images were chosen to test our proposed method, but our method can, in fact, be general for other MR segmentations using EM with which the Gaussian mixture distribution of an image histogram holds. The results from our method suggested that a fully automatic segmentation using EM can be achieved with no significant difference in segmentation accuracy compared to the conventional EM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power efficient output stages for high density implantable stimulators — Review and outlook Electrical characteristics of photodetector with transparent contact Time base distance estimation model for localization in wireless sensor network WiFi electronic nose for indoor air monitoring The effects of temperature and device demension of MOSFETs on the DC characteristics of CMOS inverter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1