{"title":"利用人工免疫系统诱导模糊回归林木","authors":"Fathi Gasir, Keeley A. Crockett, Z. Bandar","doi":"10.1142/S0218488512400181","DOIUrl":null,"url":null,"abstract":"Fuzzy decision forests aim to improve the predictive power of single fuzzy decision trees by allowing multiple views of the same domain to be modelled. Such forests have been successfully created for classification problems where the outcome field is discrete; however predicting a continuous output value is more challenging in combining the output from multiple fuzzy decision trees. This paper presents a new approach to creating fuzzy regression tree forests based upon the induction of multiple fuzzy regression decision trees from one training sample, where each tree will represent a different view of the data domain. The singular fuzzy regression trees are induced using a proven algorithm known as Elgasir which fuzzifies crisp CHAID decision trees using trapezoidal membership functions for fuzzification and applies Takagi-Sugeno inference to obtain the final predicted values. A modified version of Artificial Immune System Network model (opt-aiNet) is then used for the simultaneous optimization of the membership functions across all trees within the forest. A strength of the proposed method is that data does not require fuzzification before forest induction this reducing pre-processing time and the need for subjective human experts. Five problem sets from the UCI repository and KEEL repository are used to evaluate the approach. The experimental results have shown that fuzzy regression tree forests reduce the error rate compared with single fuzzy regression trees.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"185 1","pages":"133-157"},"PeriodicalIF":1.0000,"publicationDate":"2012-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"INDUCING FUZZY REGRESSION TREE FORESTS USING ARTIFICIAL IMMUNE SYSTEMS\",\"authors\":\"Fathi Gasir, Keeley A. Crockett, Z. Bandar\",\"doi\":\"10.1142/S0218488512400181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy decision forests aim to improve the predictive power of single fuzzy decision trees by allowing multiple views of the same domain to be modelled. Such forests have been successfully created for classification problems where the outcome field is discrete; however predicting a continuous output value is more challenging in combining the output from multiple fuzzy decision trees. This paper presents a new approach to creating fuzzy regression tree forests based upon the induction of multiple fuzzy regression decision trees from one training sample, where each tree will represent a different view of the data domain. The singular fuzzy regression trees are induced using a proven algorithm known as Elgasir which fuzzifies crisp CHAID decision trees using trapezoidal membership functions for fuzzification and applies Takagi-Sugeno inference to obtain the final predicted values. A modified version of Artificial Immune System Network model (opt-aiNet) is then used for the simultaneous optimization of the membership functions across all trees within the forest. A strength of the proposed method is that data does not require fuzzification before forest induction this reducing pre-processing time and the need for subjective human experts. Five problem sets from the UCI repository and KEEL repository are used to evaluate the approach. The experimental results have shown that fuzzy regression tree forests reduce the error rate compared with single fuzzy regression trees.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"185 1\",\"pages\":\"133-157\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218488512400181\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488512400181","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
INDUCING FUZZY REGRESSION TREE FORESTS USING ARTIFICIAL IMMUNE SYSTEMS
Fuzzy decision forests aim to improve the predictive power of single fuzzy decision trees by allowing multiple views of the same domain to be modelled. Such forests have been successfully created for classification problems where the outcome field is discrete; however predicting a continuous output value is more challenging in combining the output from multiple fuzzy decision trees. This paper presents a new approach to creating fuzzy regression tree forests based upon the induction of multiple fuzzy regression decision trees from one training sample, where each tree will represent a different view of the data domain. The singular fuzzy regression trees are induced using a proven algorithm known as Elgasir which fuzzifies crisp CHAID decision trees using trapezoidal membership functions for fuzzification and applies Takagi-Sugeno inference to obtain the final predicted values. A modified version of Artificial Immune System Network model (opt-aiNet) is then used for the simultaneous optimization of the membership functions across all trees within the forest. A strength of the proposed method is that data does not require fuzzification before forest induction this reducing pre-processing time and the need for subjective human experts. Five problem sets from the UCI repository and KEEL repository are used to evaluate the approach. The experimental results have shown that fuzzy regression tree forests reduce the error rate compared with single fuzzy regression trees.
期刊介绍:
The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.