J. Matematika, Sains dan, Teknologi, Muhammad Aji Permana, M. Faisal, Jurusan Magister Informatika
{"title":"Uji Performa Prediksi Gempa Bumi di Jawa Timur dengan Artificial Neural Network","authors":"J. Matematika, Sains dan, Teknologi, Muhammad Aji Permana, M. Faisal, Jurusan Magister Informatika","doi":"10.34312/euler.v11i1.19291","DOIUrl":null,"url":null,"abstract":"East Java Province is an area directly adjacent to the Eurasian and Indo-Australian plate subduction zones, this has resulted in East Java province being an area prone to earthquakes. Predictions regarding the frequency of earthquake occurrences are very interesting to study. This needs to be done in order to increase our preparedness in an effort to reduce the risk of earthquakes. Research on earthquake prediction has been carried out, one of which is the artificial neural network method. The purpose of this study is to obtain the best network architecture that is applied to the data on the frequency of earthquake occurrences per month in East Java Province. Data on earthquake occurrences come from the BMKG Nganjuk Geophysics Station, which was recorded during the 2016-2021 period. The data was then grouped into the total frequency of events per month. The criteria for selecting the best network architecture are carried out by comparing each possible architecture's error values. The test method uses SSE (sum square error) criteria for each architectural model of the artificial neural network. The test results show that the input variation has a significant contribution and a greater correlation than the variation in the number of hidden neurons. The best prediction results are obtained in the model with 9-30-1 architecture with an error value of 0.1958.","PeriodicalId":30843,"journal":{"name":"Jurnal Teknosains Jurnal Ilmiah Sains dan Teknologi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknosains Jurnal Ilmiah Sains dan Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34312/euler.v11i1.19291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

东爪哇省直接毗邻欧亚板块和印澳板块俯冲带,这导致东爪哇省是一个地震多发地区。关于地震发生频率的预测研究起来非常有趣。这样做是为了加强我们的准备工作,努力减少地震的风险。地震预报的研究已经展开,人工神经网络方法就是其中之一。本研究的目的是获得应用于东爪哇省每月地震发生频率数据的最佳网络架构。地震发生的数据来自BMKG Nganjuk地球物理站,记录于2016-2021年期间。然后将数据分组到每月事件的总频率中。选择最佳网络体系结构的标准是通过比较每种可能体系结构的误差值来实现的。该测试方法对人工神经网络的每个架构模型使用SSE(和平方误差)标准。测试结果表明,输入量的变化比隐藏神经元数量的变化有显著的贡献和更大的相关性。采用“9-30-1”结构的模型预测效果最好,误差值为0.1958。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uji Performa Prediksi Gempa Bumi di Jawa Timur dengan Artificial Neural Network
East Java Province is an area directly adjacent to the Eurasian and Indo-Australian plate subduction zones, this has resulted in East Java province being an area prone to earthquakes. Predictions regarding the frequency of earthquake occurrences are very interesting to study. This needs to be done in order to increase our preparedness in an effort to reduce the risk of earthquakes. Research on earthquake prediction has been carried out, one of which is the artificial neural network method. The purpose of this study is to obtain the best network architecture that is applied to the data on the frequency of earthquake occurrences per month in East Java Province. Data on earthquake occurrences come from the BMKG Nganjuk Geophysics Station, which was recorded during the 2016-2021 period. The data was then grouped into the total frequency of events per month. The criteria for selecting the best network architecture are carried out by comparing each possible architecture's error values. The test method uses SSE (sum square error) criteria for each architectural model of the artificial neural network. The test results show that the input variation has a significant contribution and a greater correlation than the variation in the number of hidden neurons. The best prediction results are obtained in the model with 9-30-1 architecture with an error value of 0.1958.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
9
审稿时长
16 weeks
期刊最新文献
Peranan Site Manager Terhadap Kinerja Pelaksanaan Proyek Konstruksi Gedung Di Kabupaten Bireuen Analisis kegagalan rintisan usaha pasca pelatihan dalam program PKW bidang barista 2021 oleh PKBM Annisa menggunakan metode failure mode and effect analysis Eksistensi fitoplankton di kolong pascatambang timah dengan umur berbeda Pemodelan 2D sistem akuifer menggunakan metode geolistrik di Desa Lembangloe Kecamatan Biringbulu Kabupaten Gowa Analisis kesesuaian mutu air pada muara kanal Panampu Kota Makassar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1