{"title":"采用有源钳位电路的软开关全桥升压变换器","authors":"R. Watson, F. Lee","doi":"10.1109/PESC.1996.548847","DOIUrl":null,"url":null,"abstract":"A new full-bridge, active-clamp boost converter is proposed for single-phase high power PFC applications and applications requiring transformer isolation. The active-clamp network serves to limit bridge switch turn-off voltage overshoot and enable the energy stored in the transformer leakage inductance to be used for zero-voltage switching. PWM phase-shift control of the bridge switches is utilized to obtain zero-current switching for two of the four bridge switches. Simulation results are presented which verify the principle of operation.","PeriodicalId":19979,"journal":{"name":"PESC Record. 27th Annual IEEE Power Electronics Specialists Conference","volume":"8 1","pages":"1948-1954 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":"{\"title\":\"A soft-switched, full-bridge boost converter employing an active-clamp circuit\",\"authors\":\"R. Watson, F. Lee\",\"doi\":\"10.1109/PESC.1996.548847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new full-bridge, active-clamp boost converter is proposed for single-phase high power PFC applications and applications requiring transformer isolation. The active-clamp network serves to limit bridge switch turn-off voltage overshoot and enable the energy stored in the transformer leakage inductance to be used for zero-voltage switching. PWM phase-shift control of the bridge switches is utilized to obtain zero-current switching for two of the four bridge switches. Simulation results are presented which verify the principle of operation.\",\"PeriodicalId\":19979,\"journal\":{\"name\":\"PESC Record. 27th Annual IEEE Power Electronics Specialists Conference\",\"volume\":\"8 1\",\"pages\":\"1948-1954 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"185\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PESC Record. 27th Annual IEEE Power Electronics Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESC.1996.548847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PESC Record. 27th Annual IEEE Power Electronics Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESC.1996.548847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A soft-switched, full-bridge boost converter employing an active-clamp circuit
A new full-bridge, active-clamp boost converter is proposed for single-phase high power PFC applications and applications requiring transformer isolation. The active-clamp network serves to limit bridge switch turn-off voltage overshoot and enable the energy stored in the transformer leakage inductance to be used for zero-voltage switching. PWM phase-shift control of the bridge switches is utilized to obtain zero-current switching for two of the four bridge switches. Simulation results are presented which verify the principle of operation.