{"title":"使用正交性约束的基于反光镜的相机姿态估计","authors":"Kosuke Takahashi, S. Nobuhara, T. Matsuyama","doi":"10.2197/ipsjtcva.8.11","DOIUrl":null,"url":null,"abstract":"This paper is aimed at employing mirrors to estimate relative posture and position of camera, i.e., extrinsic parameters, against a 3D reference object that is not directly visible from the camera. The key contribution of this paper is to propose a novel formulation of extrinsic camera calibration based on orthogonality constraint which should be satisfied by all families of mirror-reflections of a single reference object. This allows us to obtain a larger number of equations which contribute to make the calibration more robust. We demonstrate the advantages of the proposed method in comparison with a state-of-the-art by qualitative and quantitative evaluations using synthesized and real data.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"62 1","pages":"11-19"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Mirror-based Camera Pose Estimation Using an Orthogonality Constraint\",\"authors\":\"Kosuke Takahashi, S. Nobuhara, T. Matsuyama\",\"doi\":\"10.2197/ipsjtcva.8.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is aimed at employing mirrors to estimate relative posture and position of camera, i.e., extrinsic parameters, against a 3D reference object that is not directly visible from the camera. The key contribution of this paper is to propose a novel formulation of extrinsic camera calibration based on orthogonality constraint which should be satisfied by all families of mirror-reflections of a single reference object. This allows us to obtain a larger number of equations which contribute to make the calibration more robust. We demonstrate the advantages of the proposed method in comparison with a state-of-the-art by qualitative and quantitative evaluations using synthesized and real data.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"62 1\",\"pages\":\"11-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.8.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.8.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Mirror-based Camera Pose Estimation Using an Orthogonality Constraint
This paper is aimed at employing mirrors to estimate relative posture and position of camera, i.e., extrinsic parameters, against a 3D reference object that is not directly visible from the camera. The key contribution of this paper is to propose a novel formulation of extrinsic camera calibration based on orthogonality constraint which should be satisfied by all families of mirror-reflections of a single reference object. This allows us to obtain a larger number of equations which contribute to make the calibration more robust. We demonstrate the advantages of the proposed method in comparison with a state-of-the-art by qualitative and quantitative evaluations using synthesized and real data.