G. Downs, D. Upadhyay, S. Mandjiny, J. Frederick, L. Holmes
{"title":"利用嗜菌异芽孢杆菌和荚膜芽孢杆菌的生物防治技术","authors":"G. Downs, D. Upadhyay, S. Mandjiny, J. Frederick, L. Holmes","doi":"10.33687/phytopath.008.02.2890","DOIUrl":null,"url":null,"abstract":"Entomopathogenic nematodes (in the genus Steinernema and Heterorhabditis) have been studied and successfully commercialized as biological control agents. These organisms are highly virulent and safe for the non-target environment, animals and humans. For at least 200 target species, the nematode-bacteria complex has the potential to become a mass-marketed agricultural biopesticide. However, before nematodes can be successfully integrated into the agricultural system as a regular-use, “go-to” biopesticide, it is necessary to develop economical manufacturing processes. There are several manufacturing platforms: in vitro solid fermentation; in vitro liquid fermentation; and in vivo production. This review presents an analysis of each approach and discusses the advantages and disadvantages relative to the cost of production, technical expertise required, and quality of the final product.","PeriodicalId":36106,"journal":{"name":"International Journal of Phytopathology","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological Control Technology Utilizing Heterorhabditis bacteriophora and Steinernema carpocapsae\",\"authors\":\"G. Downs, D. Upadhyay, S. Mandjiny, J. Frederick, L. Holmes\",\"doi\":\"10.33687/phytopath.008.02.2890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entomopathogenic nematodes (in the genus Steinernema and Heterorhabditis) have been studied and successfully commercialized as biological control agents. These organisms are highly virulent and safe for the non-target environment, animals and humans. For at least 200 target species, the nematode-bacteria complex has the potential to become a mass-marketed agricultural biopesticide. However, before nematodes can be successfully integrated into the agricultural system as a regular-use, “go-to” biopesticide, it is necessary to develop economical manufacturing processes. There are several manufacturing platforms: in vitro solid fermentation; in vitro liquid fermentation; and in vivo production. This review presents an analysis of each approach and discusses the advantages and disadvantages relative to the cost of production, technical expertise required, and quality of the final product.\",\"PeriodicalId\":36106,\"journal\":{\"name\":\"International Journal of Phytopathology\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytopathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33687/phytopath.008.02.2890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33687/phytopath.008.02.2890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Biological Control Technology Utilizing Heterorhabditis bacteriophora and Steinernema carpocapsae
Entomopathogenic nematodes (in the genus Steinernema and Heterorhabditis) have been studied and successfully commercialized as biological control agents. These organisms are highly virulent and safe for the non-target environment, animals and humans. For at least 200 target species, the nematode-bacteria complex has the potential to become a mass-marketed agricultural biopesticide. However, before nematodes can be successfully integrated into the agricultural system as a regular-use, “go-to” biopesticide, it is necessary to develop economical manufacturing processes. There are several manufacturing platforms: in vitro solid fermentation; in vitro liquid fermentation; and in vivo production. This review presents an analysis of each approach and discusses the advantages and disadvantages relative to the cost of production, technical expertise required, and quality of the final product.