含油井切削材料混凝土的新鲜力学性能

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY Pub Date : 2023-02-25 DOI:10.14500/aro.10962
Nabaz S. Hussein, R. K. Ibrahim
{"title":"含油井切削材料混凝土的新鲜力学性能","authors":"Nabaz S. Hussein, R. K. Ibrahim","doi":"10.14500/aro.10962","DOIUrl":null,"url":null,"abstract":"Oil-well cutting material (OWCM) is a waste generated during the process of oil-well drilling. Its disposal is costly and harmful to the environment. The chemical makeup for the material implies that it might be used as a partial cement replacement in concrete. It is high in calcium oxide, silica, and aluminum oxide, which are the main oxides found in raw materials used to produce cement. Replacing a part of cement by OWCM in concrete mixtures can directly reduce the quantity of the cement used which leads to decreasing the emission of carbon dioxide and solving the disposal problems for the OWCM as well. This process can be considered as a significant step in producing environmentally friendly concrete. This study focuses on investigating the fresh and mechanical properties of different concrete mixes that have different strength grades, containing different percentages of OWCM as a cement replacement. For this purpose, different concrete mixes containing 10%, 15%, 20%, 25%,30%, 35%, and 40% of OWCM as a cement replacement, besides the control Portland cement for the three different concrete strength grades, were prepared. After performing the slump and flow tests, cube specimens were cast and moist-cured for 3, 28, and 90 days and subjected to compression test, whereas 28-day moist-cured cylinder specimens were subjected to splitting tensile test. The test results have revealed that in spite of small reduction in strength with replacing cement by up to 20% of OWCM, the strength of the concrete remains within the designed strength grade ranges.","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fresh and Mechanical Properties of Concrete Containing Oil-Well Cutting Material\",\"authors\":\"Nabaz S. Hussein, R. K. Ibrahim\",\"doi\":\"10.14500/aro.10962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oil-well cutting material (OWCM) is a waste generated during the process of oil-well drilling. Its disposal is costly and harmful to the environment. The chemical makeup for the material implies that it might be used as a partial cement replacement in concrete. It is high in calcium oxide, silica, and aluminum oxide, which are the main oxides found in raw materials used to produce cement. Replacing a part of cement by OWCM in concrete mixtures can directly reduce the quantity of the cement used which leads to decreasing the emission of carbon dioxide and solving the disposal problems for the OWCM as well. This process can be considered as a significant step in producing environmentally friendly concrete. This study focuses on investigating the fresh and mechanical properties of different concrete mixes that have different strength grades, containing different percentages of OWCM as a cement replacement. For this purpose, different concrete mixes containing 10%, 15%, 20%, 25%,30%, 35%, and 40% of OWCM as a cement replacement, besides the control Portland cement for the three different concrete strength grades, were prepared. After performing the slump and flow tests, cube specimens were cast and moist-cured for 3, 28, and 90 days and subjected to compression test, whereas 28-day moist-cured cylinder specimens were subjected to splitting tensile test. The test results have revealed that in spite of small reduction in strength with replacing cement by up to 20% of OWCM, the strength of the concrete remains within the designed strength grade ranges.\",\"PeriodicalId\":8398,\"journal\":{\"name\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14500/aro.10962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.10962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

油井切削材料是钻井过程中产生的废弃物。它的处理是昂贵的,对环境有害。该材料的化学成分表明,它可能用作混凝土中部分水泥的替代品。它富含氧化钙、二氧化硅和氧化铝,这是用于生产水泥的原材料中发现的主要氧化物。用OWCM代替混凝土混合料中的部分水泥,可以直接减少水泥的使用量,从而减少二氧化碳的排放,同时也解决了OWCM的处置问题。这个过程可以被认为是生产环保混凝土的重要一步。本研究的重点是研究不同强度等级的混凝土混合料的新鲜性能和力学性能,这些混凝土混合料含有不同比例的OWCM作为水泥替代品。为此,配制了含有10%、15%、20%、25%、30%、35%和40%的OWCM作为水泥替代品的不同混凝土配合比,以及用于三种不同混凝土强度等级的对照波特兰水泥。在进行坍落度和流动试验后,对立方体试件进行浇铸、湿固化3天、28天和90天进行压缩试验,对28天湿固化的圆柱体试件进行劈裂拉伸试验。试验结果表明,尽管更换水泥的强度降低了20%,但混凝土的强度仍保持在设计的强度等级范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fresh and Mechanical Properties of Concrete Containing Oil-Well Cutting Material
Oil-well cutting material (OWCM) is a waste generated during the process of oil-well drilling. Its disposal is costly and harmful to the environment. The chemical makeup for the material implies that it might be used as a partial cement replacement in concrete. It is high in calcium oxide, silica, and aluminum oxide, which are the main oxides found in raw materials used to produce cement. Replacing a part of cement by OWCM in concrete mixtures can directly reduce the quantity of the cement used which leads to decreasing the emission of carbon dioxide and solving the disposal problems for the OWCM as well. This process can be considered as a significant step in producing environmentally friendly concrete. This study focuses on investigating the fresh and mechanical properties of different concrete mixes that have different strength grades, containing different percentages of OWCM as a cement replacement. For this purpose, different concrete mixes containing 10%, 15%, 20%, 25%,30%, 35%, and 40% of OWCM as a cement replacement, besides the control Portland cement for the three different concrete strength grades, were prepared. After performing the slump and flow tests, cube specimens were cast and moist-cured for 3, 28, and 90 days and subjected to compression test, whereas 28-day moist-cured cylinder specimens were subjected to splitting tensile test. The test results have revealed that in spite of small reduction in strength with replacing cement by up to 20% of OWCM, the strength of the concrete remains within the designed strength grade ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY MULTIDISCIPLINARY SCIENCES-
自引率
33.30%
发文量
33
审稿时长
16 weeks
期刊最新文献
Encryption of Color Images with a New Framework Microstrip Passive Components for Energy Harvesting and 5G Applications Optimizing Emotional Insight through Unimodal and Multimodal Long Short-term Memory Models A Review on Adverse Drug Reaction Detection Techniques Deep Learning-Based Optical Music Recognition for Semantic Representation of Non-overlap and Overlap Music Notes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1