S. Soda, Ryo Sasaki, Thi Thu Huong Nguyen, Kentaro Hayashi, A. Kanayama
{"title":"利用人工湿地开发矿山水处理技术的实验室试验系统-含镉中性矿山水的序批处理","authors":"S. Soda, Ryo Sasaki, Thi Thu Huong Nguyen, Kentaro Hayashi, A. Kanayama","doi":"10.4144/RPSJ.67.111","DOIUrl":null,"url":null,"abstract":"A lab-scale experimental system accommodating soil and plants was designed to evaluate the applicability of constructed wetlands (CWs) to mine drainage treatment. Synthetic wastewater containing Cd (0.11 mg/L) and other minerals (pH 6.8) was prepared based on the chemical composition of an actual neutral mine drainage (NMD). In lab-scale CWs consisted of a column (ID 12.5 cm, H 50 cm) filled with pumice stones and loamy soil were planted reed (Reed-CW) or cattail (Cattail-CW) plants. Some were left unplanted (Unplanted CW). The synthetic NMD (2.0 L) was treated in a 1-week cycle sequencing batch mode in the CWs in a greenhouse. The unplanted CW removed cadmium sufficiently to satisfy the effluent standard (0.03 mg/L) from the NMD, mainly by soil adsorption. Presence of the emergent plants, especially cattail, enhanced metal removal possibly by filtration with their elongated roots and metal sulfide precipitation by sulfate-reducing bacteria in the rhizosphere of the Cattail-CW.","PeriodicalId":20971,"journal":{"name":"Resources Processing","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Laboratory Experiment System for Developing Mine Drainage Treatment Technologies Using Constructed Wetlands—Sequencing Batch Treatment of Cd-Containing Neutral Mine Drainage—\",\"authors\":\"S. Soda, Ryo Sasaki, Thi Thu Huong Nguyen, Kentaro Hayashi, A. Kanayama\",\"doi\":\"10.4144/RPSJ.67.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lab-scale experimental system accommodating soil and plants was designed to evaluate the applicability of constructed wetlands (CWs) to mine drainage treatment. Synthetic wastewater containing Cd (0.11 mg/L) and other minerals (pH 6.8) was prepared based on the chemical composition of an actual neutral mine drainage (NMD). In lab-scale CWs consisted of a column (ID 12.5 cm, H 50 cm) filled with pumice stones and loamy soil were planted reed (Reed-CW) or cattail (Cattail-CW) plants. Some were left unplanted (Unplanted CW). The synthetic NMD (2.0 L) was treated in a 1-week cycle sequencing batch mode in the CWs in a greenhouse. The unplanted CW removed cadmium sufficiently to satisfy the effluent standard (0.03 mg/L) from the NMD, mainly by soil adsorption. Presence of the emergent plants, especially cattail, enhanced metal removal possibly by filtration with their elongated roots and metal sulfide precipitation by sulfate-reducing bacteria in the rhizosphere of the Cattail-CW.\",\"PeriodicalId\":20971,\"journal\":{\"name\":\"Resources Processing\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4144/RPSJ.67.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4144/RPSJ.67.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Laboratory Experiment System for Developing Mine Drainage Treatment Technologies Using Constructed Wetlands—Sequencing Batch Treatment of Cd-Containing Neutral Mine Drainage—
A lab-scale experimental system accommodating soil and plants was designed to evaluate the applicability of constructed wetlands (CWs) to mine drainage treatment. Synthetic wastewater containing Cd (0.11 mg/L) and other minerals (pH 6.8) was prepared based on the chemical composition of an actual neutral mine drainage (NMD). In lab-scale CWs consisted of a column (ID 12.5 cm, H 50 cm) filled with pumice stones and loamy soil were planted reed (Reed-CW) or cattail (Cattail-CW) plants. Some were left unplanted (Unplanted CW). The synthetic NMD (2.0 L) was treated in a 1-week cycle sequencing batch mode in the CWs in a greenhouse. The unplanted CW removed cadmium sufficiently to satisfy the effluent standard (0.03 mg/L) from the NMD, mainly by soil adsorption. Presence of the emergent plants, especially cattail, enhanced metal removal possibly by filtration with their elongated roots and metal sulfide precipitation by sulfate-reducing bacteria in the rhizosphere of the Cattail-CW.