{"title":"在PyTorch中改进LBFGS优化器:从无线电干涉校准到机器学习的知识转移","authors":"S. Yatawatta, H. Spreeuw, F. Diblen","doi":"10.1109/eScience.2018.00112","DOIUrl":null,"url":null,"abstract":"We have modified the LBFGS optimizer in PyTorch based on our knowledge in using the LBFGS algorithm in radio interferometric calibration (SAGECal). We give results to show the performance improvement of PyTorch in various machine learning applications due to our improvements.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"91 1","pages":"386-387"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving LBFGS Optimizer in PyTorch: Knowledge Transfer from Radio Interferometric Calibration to Machine Learning\",\"authors\":\"S. Yatawatta, H. Spreeuw, F. Diblen\",\"doi\":\"10.1109/eScience.2018.00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have modified the LBFGS optimizer in PyTorch based on our knowledge in using the LBFGS algorithm in radio interferometric calibration (SAGECal). We give results to show the performance improvement of PyTorch in various machine learning applications due to our improvements.\",\"PeriodicalId\":6476,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"volume\":\"91 1\",\"pages\":\"386-387\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2018.00112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving LBFGS Optimizer in PyTorch: Knowledge Transfer from Radio Interferometric Calibration to Machine Learning
We have modified the LBFGS optimizer in PyTorch based on our knowledge in using the LBFGS algorithm in radio interferometric calibration (SAGECal). We give results to show the performance improvement of PyTorch in various machine learning applications due to our improvements.