移动机器人定位安全的递归完整性监测

Guillermo Duenas Arana, O. A. Hafez, M. Joerger, M. Spenko
{"title":"移动机器人定位安全的递归完整性监测","authors":"Guillermo Duenas Arana, O. A. Hafez, M. Joerger, M. Spenko","doi":"10.1109/ICRA.2019.8794115","DOIUrl":null,"url":null,"abstract":"This paper presents a new methodology to quantify robot localization safety by evaluating integrity risk, a performance metric widely used in open-sky aviation applications that has been recently extended to mobile ground robots. Here, a robot is localized by feeding relative measurements to mapped landmarks into an Extended Kalman Filter while a sequence of innovations is evaluated for fault detection. The main contribution is the derivation of a sequential chi-squared integrity monitoring methodology that maintains constant computation requirements by employing a preceding time window and, at the same time, is robust against faults occurring prior to the window. Additionally, no assumptions are made on either the nature or shape of the faults because safety is evaluated under the worst possible combination of sensor faults.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"200 1","pages":"305-311"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Recursive Integrity Monitoring for Mobile Robot Localization Safety\",\"authors\":\"Guillermo Duenas Arana, O. A. Hafez, M. Joerger, M. Spenko\",\"doi\":\"10.1109/ICRA.2019.8794115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new methodology to quantify robot localization safety by evaluating integrity risk, a performance metric widely used in open-sky aviation applications that has been recently extended to mobile ground robots. Here, a robot is localized by feeding relative measurements to mapped landmarks into an Extended Kalman Filter while a sequence of innovations is evaluated for fault detection. The main contribution is the derivation of a sequential chi-squared integrity monitoring methodology that maintains constant computation requirements by employing a preceding time window and, at the same time, is robust against faults occurring prior to the window. Additionally, no assumptions are made on either the nature or shape of the faults because safety is evaluated under the worst possible combination of sensor faults.\",\"PeriodicalId\":6730,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"200 1\",\"pages\":\"305-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2019.8794115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种通过评估完整性风险来量化机器人定位安全性的新方法,完整性风险是一种广泛应用于开放天空航空应用的性能指标,最近已扩展到移动地面机器人。在这里,通过将映射的地标的相对测量值馈送到扩展卡尔曼滤波器中来定位机器人,同时评估一系列创新以进行故障检测。主要贡献是推导出一种顺序卡方完整性监测方法,该方法通过使用之前的时间窗口来保持恒定的计算需求,同时对在窗口之前发生的故障具有鲁棒性。此外,没有对故障的性质或形状进行假设,因为安全性是在传感器故障的最坏可能组合下评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recursive Integrity Monitoring for Mobile Robot Localization Safety
This paper presents a new methodology to quantify robot localization safety by evaluating integrity risk, a performance metric widely used in open-sky aviation applications that has been recently extended to mobile ground robots. Here, a robot is localized by feeding relative measurements to mapped landmarks into an Extended Kalman Filter while a sequence of innovations is evaluated for fault detection. The main contribution is the derivation of a sequential chi-squared integrity monitoring methodology that maintains constant computation requirements by employing a preceding time window and, at the same time, is robust against faults occurring prior to the window. Additionally, no assumptions are made on either the nature or shape of the faults because safety is evaluated under the worst possible combination of sensor faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving collective decision accuracy via time-varying cross-inhibition Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator* Adaptive H∞ Controller for Precise Manoeuvring of a Space Robot Laparoscopy instrument tracking for single view camera and skill assessment Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1