Guillermo Duenas Arana, O. A. Hafez, M. Joerger, M. Spenko
{"title":"移动机器人定位安全的递归完整性监测","authors":"Guillermo Duenas Arana, O. A. Hafez, M. Joerger, M. Spenko","doi":"10.1109/ICRA.2019.8794115","DOIUrl":null,"url":null,"abstract":"This paper presents a new methodology to quantify robot localization safety by evaluating integrity risk, a performance metric widely used in open-sky aviation applications that has been recently extended to mobile ground robots. Here, a robot is localized by feeding relative measurements to mapped landmarks into an Extended Kalman Filter while a sequence of innovations is evaluated for fault detection. The main contribution is the derivation of a sequential chi-squared integrity monitoring methodology that maintains constant computation requirements by employing a preceding time window and, at the same time, is robust against faults occurring prior to the window. Additionally, no assumptions are made on either the nature or shape of the faults because safety is evaluated under the worst possible combination of sensor faults.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"200 1","pages":"305-311"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Recursive Integrity Monitoring for Mobile Robot Localization Safety\",\"authors\":\"Guillermo Duenas Arana, O. A. Hafez, M. Joerger, M. Spenko\",\"doi\":\"10.1109/ICRA.2019.8794115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new methodology to quantify robot localization safety by evaluating integrity risk, a performance metric widely used in open-sky aviation applications that has been recently extended to mobile ground robots. Here, a robot is localized by feeding relative measurements to mapped landmarks into an Extended Kalman Filter while a sequence of innovations is evaluated for fault detection. The main contribution is the derivation of a sequential chi-squared integrity monitoring methodology that maintains constant computation requirements by employing a preceding time window and, at the same time, is robust against faults occurring prior to the window. Additionally, no assumptions are made on either the nature or shape of the faults because safety is evaluated under the worst possible combination of sensor faults.\",\"PeriodicalId\":6730,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"200 1\",\"pages\":\"305-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2019.8794115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recursive Integrity Monitoring for Mobile Robot Localization Safety
This paper presents a new methodology to quantify robot localization safety by evaluating integrity risk, a performance metric widely used in open-sky aviation applications that has been recently extended to mobile ground robots. Here, a robot is localized by feeding relative measurements to mapped landmarks into an Extended Kalman Filter while a sequence of innovations is evaluated for fault detection. The main contribution is the derivation of a sequential chi-squared integrity monitoring methodology that maintains constant computation requirements by employing a preceding time window and, at the same time, is robust against faults occurring prior to the window. Additionally, no assumptions are made on either the nature or shape of the faults because safety is evaluated under the worst possible combination of sensor faults.