学习最小显著区回归的螺旋共享网络显著性检测

Zukai Chen, Xin Tan, Hengliang Zhu, Shouhong Ding, Lizhuang Ma, Haichuan Song
{"title":"学习最小显著区回归的螺旋共享网络显著性检测","authors":"Zukai Chen, Xin Tan, Hengliang Zhu, Shouhong Ding, Lizhuang Ma, Haichuan Song","doi":"10.1109/ICASSP.2019.8682531","DOIUrl":null,"url":null,"abstract":"With the development of convolutional neural networks (CNNs), saliency detection methods have made a big progress in recent years. However, the previous methods sometimes mistakenly highlight the non-salient region, especially in complex backgrounds. To solve this problem, a two-stage method for saliency detection is proposed in this paper. In the first stage, a network is used to regress the minimum salient region (RMSR) containing all salient objects. Then in the second stage, in order to fuse the multi-level features, the spiral sharing network (SSN) is proposed for pixel-level detection on the result of RMSR. Experimental results on four public datasets show that our model is effective over the state-of-the-art approaches.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"125 1","pages":"1667-1671"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning the Spiral Sharing Network with Minimum Salient Region Regression for Saliency Detection\",\"authors\":\"Zukai Chen, Xin Tan, Hengliang Zhu, Shouhong Ding, Lizhuang Ma, Haichuan Song\",\"doi\":\"10.1109/ICASSP.2019.8682531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of convolutional neural networks (CNNs), saliency detection methods have made a big progress in recent years. However, the previous methods sometimes mistakenly highlight the non-salient region, especially in complex backgrounds. To solve this problem, a two-stage method for saliency detection is proposed in this paper. In the first stage, a network is used to regress the minimum salient region (RMSR) containing all salient objects. Then in the second stage, in order to fuse the multi-level features, the spiral sharing network (SSN) is proposed for pixel-level detection on the result of RMSR. Experimental results on four public datasets show that our model is effective over the state-of-the-art approaches.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"125 1\",\"pages\":\"1667-1671\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着卷积神经网络(cnn)的发展,显著性检测方法近年来取得了很大的进步。然而,以往的方法有时会错误地突出非显著区域,特别是在复杂背景下。为了解决这一问题,本文提出了一种两阶段显著性检测方法。在第一阶段,使用网络回归包含所有显著对象的最小显著区域(RMSR)。然后,在第二阶段,为了融合多层次特征,提出螺旋共享网络(SSN)对RMSR结果进行像素级检测。在四个公共数据集上的实验结果表明,我们的模型比最先进的方法有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning the Spiral Sharing Network with Minimum Salient Region Regression for Saliency Detection
With the development of convolutional neural networks (CNNs), saliency detection methods have made a big progress in recent years. However, the previous methods sometimes mistakenly highlight the non-salient region, especially in complex backgrounds. To solve this problem, a two-stage method for saliency detection is proposed in this paper. In the first stage, a network is used to regress the minimum salient region (RMSR) containing all salient objects. Then in the second stage, in order to fuse the multi-level features, the spiral sharing network (SSN) is proposed for pixel-level detection on the result of RMSR. Experimental results on four public datasets show that our model is effective over the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1