可扩展异构Hadoop系统的混合调度方法

Aysan Rasooli Oskooei, D. Down
{"title":"可扩展异构Hadoop系统的混合调度方法","authors":"Aysan Rasooli Oskooei, D. Down","doi":"10.1109/SC.Companion.2012.155","DOIUrl":null,"url":null,"abstract":"The scalability of Cloud infrastructures has significantly increased their applicability. Hadoop, which works based on a MapReduce model, provides for efficient processing of Big Data. This solution is being used widely by most Cloud providers. Hadoop schedulers are critical elements for providing desired performance levels. A scheduler assigns MapReduce tasks to Hadoop resources. There is a considerable challenge to schedule the growing number of tasks and resources in a scalable manner. Moreover, the potential heterogeneous nature of deployed Hadoop systems tends to increase this challenge. This paper analyzes the performance of widely used Hadoop schedulers including FIFO and Fair sharing and compares them with the COSHH (Classification and Optimization based Scheduler for Heterogeneous Hadoop) scheduler, which has been developed by the authors. Based on our insights, a hybrid solution is introduced, which selects appropriate scheduling algorithms for scalable and heterogeneous Hadoop systems with respect to the number of incoming jobs and available resources.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"39 1","pages":"1284-1291"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop Systems\",\"authors\":\"Aysan Rasooli Oskooei, D. Down\",\"doi\":\"10.1109/SC.Companion.2012.155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scalability of Cloud infrastructures has significantly increased their applicability. Hadoop, which works based on a MapReduce model, provides for efficient processing of Big Data. This solution is being used widely by most Cloud providers. Hadoop schedulers are critical elements for providing desired performance levels. A scheduler assigns MapReduce tasks to Hadoop resources. There is a considerable challenge to schedule the growing number of tasks and resources in a scalable manner. Moreover, the potential heterogeneous nature of deployed Hadoop systems tends to increase this challenge. This paper analyzes the performance of widely used Hadoop schedulers including FIFO and Fair sharing and compares them with the COSHH (Classification and Optimization based Scheduler for Heterogeneous Hadoop) scheduler, which has been developed by the authors. Based on our insights, a hybrid solution is introduced, which selects appropriate scheduling algorithms for scalable and heterogeneous Hadoop systems with respect to the number of incoming jobs and available resources.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"39 1\",\"pages\":\"1284-1291\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

云基础设施的可伸缩性大大提高了它们的适用性。Hadoop基于MapReduce模型,提供了对大数据的高效处理。这种解决方案被大多数云提供商广泛使用。Hadoop调度器是提供所需性能级别的关键元素。调度程序将MapReduce任务分配给Hadoop资源。以可伸缩的方式安排越来越多的任务和资源是一个相当大的挑战。此外,已部署Hadoop系统的潜在异构特性往往会增加这一挑战。分析了先进先出(FIFO)和公平共享(Fair sharing)等Hadoop调度程序的性能,并与作者开发的COSHH (Classification and Optimization based Scheduler for Heterogeneous Hadoop)调度程序进行了比较。基于我们的见解,介绍了一种混合解决方案,它根据传入作业和可用资源的数量为可扩展和异构Hadoop系统选择适当的调度算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop Systems
The scalability of Cloud infrastructures has significantly increased their applicability. Hadoop, which works based on a MapReduce model, provides for efficient processing of Big Data. This solution is being used widely by most Cloud providers. Hadoop schedulers are critical elements for providing desired performance levels. A scheduler assigns MapReduce tasks to Hadoop resources. There is a considerable challenge to schedule the growing number of tasks and resources in a scalable manner. Moreover, the potential heterogeneous nature of deployed Hadoop systems tends to increase this challenge. This paper analyzes the performance of widely used Hadoop schedulers including FIFO and Fair sharing and compares them with the COSHH (Classification and Optimization based Scheduler for Heterogeneous Hadoop) scheduler, which has been developed by the authors. Based on our insights, a hybrid solution is introduced, which selects appropriate scheduling algorithms for scalable and heterogeneous Hadoop systems with respect to the number of incoming jobs and available resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1