电磁波在冰雪下垫面的传播速度

V. Malyshev, V. Mashkov, Владимир Алексеевич Малышев, В.Г. Машков
{"title":"电磁波在冰雪下垫面的传播速度","authors":"V. Malyshev, V. Mashkov, Владимир Алексеевич Малышев, В.Г. Машков","doi":"10.17516/1999-494x-0313","DOIUrl":null,"url":null,"abstract":"The results calculations the electromagnetic wave propagation velocity in the snow-ice cover depending on the density, the proportion liquid water content, and the propagation speeds the electromagnetic wave in dry snow, dry firn, and dry ice vary very markedly depending on the proportion liquid water content, the preferred orientation, and the shape ice and air structure are presented. The inclusions in the snow. The performed estimates the complex relative permittivity the medium that determines the speed propagation electromagnetic waves show a noticeable influence the density, the proportion liquid water content and the structure the underlying surface (snow, firn, ice), which allows identifying the layers the underlying surface in order to remotely determine the possibility landing a helicopter-type aircraft on an unprepared site with snow-ice cover. Shown, when the portion the water content in the medium is equal to zero, which is typical for negative temperatures, the speed propagation electromagnetic waves in the medium will depend on the density the medium and structure the dry ice in a small range of 1 m/μs temperature. In dry snow, vertically and horizontally elongated or spherical inclusions make a significant contribution to the change in the speed propagation the electromagnetic wave. At zero temperature, in the frequency range of 2 ... 8 GHz, the share water content in the medium, the density and structure the medium will play a determining role in the speed propagation an electromagnetic wave in the medium. The purpose this article is to determine the change ranges speed propagation electromagnetic waves in snow-ice the underlying surface depending on the density, structure, water content to restore the structure the snow and ice according to radar sensing, a more accurate determination the depth snow and thickness ice cover used in the assessment the possibility the safe landing an aircraft the helicopter type on an unprepared ground with snow-ice cover","PeriodicalId":17206,"journal":{"name":"Journal of Siberian Federal University: Engineering & Technologies","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Speed Electromagnetic Wave Propagation in the Snow-Ice Underlying Surface\",\"authors\":\"V. Malyshev, V. Mashkov, Владимир Алексеевич Малышев, В.Г. Машков\",\"doi\":\"10.17516/1999-494x-0313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results calculations the electromagnetic wave propagation velocity in the snow-ice cover depending on the density, the proportion liquid water content, and the propagation speeds the electromagnetic wave in dry snow, dry firn, and dry ice vary very markedly depending on the proportion liquid water content, the preferred orientation, and the shape ice and air structure are presented. The inclusions in the snow. The performed estimates the complex relative permittivity the medium that determines the speed propagation electromagnetic waves show a noticeable influence the density, the proportion liquid water content and the structure the underlying surface (snow, firn, ice), which allows identifying the layers the underlying surface in order to remotely determine the possibility landing a helicopter-type aircraft on an unprepared site with snow-ice cover. Shown, when the portion the water content in the medium is equal to zero, which is typical for negative temperatures, the speed propagation electromagnetic waves in the medium will depend on the density the medium and structure the dry ice in a small range of 1 m/μs temperature. In dry snow, vertically and horizontally elongated or spherical inclusions make a significant contribution to the change in the speed propagation the electromagnetic wave. At zero temperature, in the frequency range of 2 ... 8 GHz, the share water content in the medium, the density and structure the medium will play a determining role in the speed propagation an electromagnetic wave in the medium. The purpose this article is to determine the change ranges speed propagation electromagnetic waves in snow-ice the underlying surface depending on the density, structure, water content to restore the structure the snow and ice according to radar sensing, a more accurate determination the depth snow and thickness ice cover used in the assessment the possibility the safe landing an aircraft the helicopter type on an unprepared ground with snow-ice cover\",\"PeriodicalId\":17206,\"journal\":{\"name\":\"Journal of Siberian Federal University: Engineering & Technologies\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University: Engineering & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1999-494x-0313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University: Engineering & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1999-494x-0313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

结果计算了电磁波在冰雪覆盖层中随密度、液态水含量比例的传播速度,并给出了电磁波在干雪、干雪和干冰中的传播速度随液态水含量比例、优选方向和冰与空气结构形状的变化规律。雪中的夹杂物。本文估计了决定电磁波传播速度的介质的复杂相对介电常数对下垫面(雪、雪、冰)的密度、液态水含量比例和结构的显著影响,从而可以识别下垫面的层数,从而远程确定直升机型飞机在冰雪覆盖的非准备场地降落的可能性。如图所示,当介质中含水量为零时,在温度为1 m/μs的小范围内,电磁波在介质中的传播速度取决于介质的密度和干冰的结构。在干雪中,垂直和水平方向的细长或球形夹杂物对电磁波传播速度的变化有重要贡献。在零温度下,频率范围为2…8 GHz时,介质中所含的水分、介质的密度和结构将对电磁波在介质中的传播速度起决定性作用。本文的目的是根据雷达传感确定雪冰下垫面中电磁波随密度、结构、含水量的变化范围和传播速度,以恢复冰雪的结构,更准确地确定积雪深度和冰盖厚度,用于评估直升机型飞机在无准备的冰雪覆盖地面上安全降落的可能性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Speed Electromagnetic Wave Propagation in the Snow-Ice Underlying Surface
The results calculations the electromagnetic wave propagation velocity in the snow-ice cover depending on the density, the proportion liquid water content, and the propagation speeds the electromagnetic wave in dry snow, dry firn, and dry ice vary very markedly depending on the proportion liquid water content, the preferred orientation, and the shape ice and air structure are presented. The inclusions in the snow. The performed estimates the complex relative permittivity the medium that determines the speed propagation electromagnetic waves show a noticeable influence the density, the proportion liquid water content and the structure the underlying surface (snow, firn, ice), which allows identifying the layers the underlying surface in order to remotely determine the possibility landing a helicopter-type aircraft on an unprepared site with snow-ice cover. Shown, when the portion the water content in the medium is equal to zero, which is typical for negative temperatures, the speed propagation electromagnetic waves in the medium will depend on the density the medium and structure the dry ice in a small range of 1 m/μs temperature. In dry snow, vertically and horizontally elongated or spherical inclusions make a significant contribution to the change in the speed propagation the electromagnetic wave. At zero temperature, in the frequency range of 2 ... 8 GHz, the share water content in the medium, the density and structure the medium will play a determining role in the speed propagation an electromagnetic wave in the medium. The purpose this article is to determine the change ranges speed propagation electromagnetic waves in snow-ice the underlying surface depending on the density, structure, water content to restore the structure the snow and ice according to radar sensing, a more accurate determination the depth snow and thickness ice cover used in the assessment the possibility the safe landing an aircraft the helicopter type on an unprepared ground with snow-ice cover
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Approach to Simulation of Continuous Seeded Crystallization of Gibbsite Development of an Algorithm for Defining Thyristors Opening Angle Value at the New Configuration of Grid Commutation of Reversible Converter Arms of Electric Locomotive The Influence of Manufacturing Technology on the Properties of Chromium-Bronze Electrodes for Contact Relief Welding of Reinforcing Rods Electrolytic Processing of Pb-Bi Alloy Issues of Development of Solar Collectors with High Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1