{"title":"盒中组图布局的最优树重新排序","authors":"Yosuke Onoue, K. Koyamada","doi":"10.1145/3139295.3139308","DOIUrl":null,"url":null,"abstract":"Visualizing the group structure of graphs is important in analyzing complex networks. The group structure referred to here includes not only community structures defined in terms of modularity and the like but also group divisions based on node attributes. Group-In-a-Box (GIB) is a graph-drawing method designed for visualizing the group structure of graphs. Using a GIB layout, it is possible to simultaneously visualize group sizes and both within-group and between-group structures. However, conventional GIB layouts do not optimize display of between-group relations, causing many long edges to appear in the graph area and potentially reducing graph readability. This paper focuses on the tree structure of treemap used in GIB layouts as a basis for proposing a tree-reordered GIB (TRGIB) layout with a procedure for replacing sibling nodes in the tree structure. Group proximity is defined in terms of between-group distances and connection weights, and an optimal tree reordering problem (OTRP) that minimizes group proximity is formulated as a mixed-integer linear programming (MILP) problem. Through computational experiments, we show that optimal layout generation is possible in practical time by solving the OTRP using a general mathematical programming solver.","PeriodicalId":92446,"journal":{"name":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal tree reordering for group-in-a-box graph layouts\",\"authors\":\"Yosuke Onoue, K. Koyamada\",\"doi\":\"10.1145/3139295.3139308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualizing the group structure of graphs is important in analyzing complex networks. The group structure referred to here includes not only community structures defined in terms of modularity and the like but also group divisions based on node attributes. Group-In-a-Box (GIB) is a graph-drawing method designed for visualizing the group structure of graphs. Using a GIB layout, it is possible to simultaneously visualize group sizes and both within-group and between-group structures. However, conventional GIB layouts do not optimize display of between-group relations, causing many long edges to appear in the graph area and potentially reducing graph readability. This paper focuses on the tree structure of treemap used in GIB layouts as a basis for proposing a tree-reordered GIB (TRGIB) layout with a procedure for replacing sibling nodes in the tree structure. Group proximity is defined in terms of between-group distances and connection weights, and an optimal tree reordering problem (OTRP) that minimizes group proximity is formulated as a mixed-integer linear programming (MILP) problem. Through computational experiments, we show that optimal layout generation is possible in practical time by solving the OTRP using a general mathematical programming solver.\",\"PeriodicalId\":92446,\"journal\":{\"name\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139295.3139308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139295.3139308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
图群结构的可视化在复杂网络分析中具有重要意义。这里所指的组结构不仅包括根据模块化等定义的社区结构,还包括基于节点属性的组划分。group - in -a- box (GIB)是一种图形绘制方法,旨在将图形的组结构可视化。使用GIB布局,可以同时可视化组大小以及组内和组间结构。然而,传统的GIB布局并没有优化组间关系的显示,导致许多长边出现在图形区域,并可能降低图形的可读性。本文重点研究了用于GIB布局的树状图的树状结构,并以此为基础提出了一种树状重排序GIB (TRGIB)布局,该布局具有替换树状结构中的兄弟节点的过程。根据组间距离和连接权重定义组邻近度,并将最小化组邻近度的最优树重排序问题(OTRP)表述为混合整数线性规划(MILP)问题。通过计算实验,我们证明了使用通用数学规划求解器求解OTRP在实际时间内可以生成最优布局。
Optimal tree reordering for group-in-a-box graph layouts
Visualizing the group structure of graphs is important in analyzing complex networks. The group structure referred to here includes not only community structures defined in terms of modularity and the like but also group divisions based on node attributes. Group-In-a-Box (GIB) is a graph-drawing method designed for visualizing the group structure of graphs. Using a GIB layout, it is possible to simultaneously visualize group sizes and both within-group and between-group structures. However, conventional GIB layouts do not optimize display of between-group relations, causing many long edges to appear in the graph area and potentially reducing graph readability. This paper focuses on the tree structure of treemap used in GIB layouts as a basis for proposing a tree-reordered GIB (TRGIB) layout with a procedure for replacing sibling nodes in the tree structure. Group proximity is defined in terms of between-group distances and connection weights, and an optimal tree reordering problem (OTRP) that minimizes group proximity is formulated as a mixed-integer linear programming (MILP) problem. Through computational experiments, we show that optimal layout generation is possible in practical time by solving the OTRP using a general mathematical programming solver.