{"title":"基于轨迹的道路交叉口拓扑自动标定","authors":"Lisheng Zhao, Jiali Mao, Min Pu, Guoping Liu, Cheqing Jin, Weining Qian, Aoying Zhou, Xiang Wen, Runbo Hu, Hua Chai","doi":"10.1109/ICDE48307.2020.00145","DOIUrl":null,"url":null,"abstract":"The inaccuracy of road intersection in digital road map easily brings serious effects on the mobile navigation and other applications. Massive traveling trajectories of thousands of vehicles enable frequent updating of road intersection topology. In this paper, we first expand the road intersection detection issue into a topology calibration problem for road intersection influence zone. Distinct from the existing road intersection update methods, we not only determine the location and coverage of road intersection, but figure out incorrect or missing turning paths within whole influence zone based on unmatched trajectories as compared to the existing map. The important challenges of calibration issue include that trajectories are mixing with exceptional data, and road intersections are of different sizes and shapes, etc. To address above challenges, we propose a three-phase calibration framework, called CITT. It is composed of trajectory quality improving, core zone detection, and topology calibration within road intersection influence zone. From such components it can automatically obtain high quality topology of road intersection influence zone. Extensive experiments compared with the state-of-the-art methods using trajectory data obtained from Didi Chuxing and Chicago campus shuttles demonstrate that CITT method has strong stability and robustness and significantly outperforms the existing methods.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"80 1","pages":"1633-1644"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic Calibration of Road Intersection Topology using Trajectories\",\"authors\":\"Lisheng Zhao, Jiali Mao, Min Pu, Guoping Liu, Cheqing Jin, Weining Qian, Aoying Zhou, Xiang Wen, Runbo Hu, Hua Chai\",\"doi\":\"10.1109/ICDE48307.2020.00145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inaccuracy of road intersection in digital road map easily brings serious effects on the mobile navigation and other applications. Massive traveling trajectories of thousands of vehicles enable frequent updating of road intersection topology. In this paper, we first expand the road intersection detection issue into a topology calibration problem for road intersection influence zone. Distinct from the existing road intersection update methods, we not only determine the location and coverage of road intersection, but figure out incorrect or missing turning paths within whole influence zone based on unmatched trajectories as compared to the existing map. The important challenges of calibration issue include that trajectories are mixing with exceptional data, and road intersections are of different sizes and shapes, etc. To address above challenges, we propose a three-phase calibration framework, called CITT. It is composed of trajectory quality improving, core zone detection, and topology calibration within road intersection influence zone. From such components it can automatically obtain high quality topology of road intersection influence zone. Extensive experiments compared with the state-of-the-art methods using trajectory data obtained from Didi Chuxing and Chicago campus shuttles demonstrate that CITT method has strong stability and robustness and significantly outperforms the existing methods.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"80 1\",\"pages\":\"1633-1644\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Calibration of Road Intersection Topology using Trajectories
The inaccuracy of road intersection in digital road map easily brings serious effects on the mobile navigation and other applications. Massive traveling trajectories of thousands of vehicles enable frequent updating of road intersection topology. In this paper, we first expand the road intersection detection issue into a topology calibration problem for road intersection influence zone. Distinct from the existing road intersection update methods, we not only determine the location and coverage of road intersection, but figure out incorrect or missing turning paths within whole influence zone based on unmatched trajectories as compared to the existing map. The important challenges of calibration issue include that trajectories are mixing with exceptional data, and road intersections are of different sizes and shapes, etc. To address above challenges, we propose a three-phase calibration framework, called CITT. It is composed of trajectory quality improving, core zone detection, and topology calibration within road intersection influence zone. From such components it can automatically obtain high quality topology of road intersection influence zone. Extensive experiments compared with the state-of-the-art methods using trajectory data obtained from Didi Chuxing and Chicago campus shuttles demonstrate that CITT method has strong stability and robustness and significantly outperforms the existing methods.