{"title":"具有陡峭光谱的银河系宇宙射线加速","authors":"R. Diesing, D. Caprioli","doi":"10.22323/1.395.0029","DOIUrl":null,"url":null,"abstract":"Galactic cosmic rays (CRs) are accelerated by astrophysical shocks, primarily supernova remnants (SNRs), via diffusive shock acceleration (DSA), an efficient mechanism that predicts power-law energy distributions of CRs. However, observations of both nonthermal SNR emission and Galactic CRs imply CR spectra that are steeper than the standard DSA prediction, ∝ −2. Recent kinetic hybrid simulations suggest that such steep spectra may be the result of a “postcursor”, or drift of CRs and magnetic structures with respect to the thermal plasma behind the shock. Using a semi-analytic model of non-linear DSA, we generalize this result to a wide range of astrophysical shocks. By accounting for the presence of a postcursor, we produce CR energy distributions that are substantially steeper than −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝ −2.2) and the very steep spectra of young radio supernovae (∝ −3).","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"252 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galactic Cosmic Ray Acceleration with Steep Spectra\",\"authors\":\"R. Diesing, D. Caprioli\",\"doi\":\"10.22323/1.395.0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Galactic cosmic rays (CRs) are accelerated by astrophysical shocks, primarily supernova remnants (SNRs), via diffusive shock acceleration (DSA), an efficient mechanism that predicts power-law energy distributions of CRs. However, observations of both nonthermal SNR emission and Galactic CRs imply CR spectra that are steeper than the standard DSA prediction, ∝ −2. Recent kinetic hybrid simulations suggest that such steep spectra may be the result of a “postcursor”, or drift of CRs and magnetic structures with respect to the thermal plasma behind the shock. Using a semi-analytic model of non-linear DSA, we generalize this result to a wide range of astrophysical shocks. By accounting for the presence of a postcursor, we produce CR energy distributions that are substantially steeper than −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝ −2.2) and the very steep spectra of young radio supernovae (∝ −3).\",\"PeriodicalId\":20473,\"journal\":{\"name\":\"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)\",\"volume\":\"252 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.395.0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.395.0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Galactic Cosmic Ray Acceleration with Steep Spectra
Galactic cosmic rays (CRs) are accelerated by astrophysical shocks, primarily supernova remnants (SNRs), via diffusive shock acceleration (DSA), an efficient mechanism that predicts power-law energy distributions of CRs. However, observations of both nonthermal SNR emission and Galactic CRs imply CR spectra that are steeper than the standard DSA prediction, ∝ −2. Recent kinetic hybrid simulations suggest that such steep spectra may be the result of a “postcursor”, or drift of CRs and magnetic structures with respect to the thermal plasma behind the shock. Using a semi-analytic model of non-linear DSA, we generalize this result to a wide range of astrophysical shocks. By accounting for the presence of a postcursor, we produce CR energy distributions that are substantially steeper than −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝ −2.2) and the very steep spectra of young radio supernovae (∝ −3).