{"title":"FaceID-GAN:学习一种对称的三人GAN,用于保持身份的人脸合成","authors":"Yujun Shen, Ping Luo, Junjie Yan, Xiaogang Wang, Xiaoou Tang","doi":"10.1109/CVPR.2018.00092","DOIUrl":null,"url":null,"abstract":"Face synthesis has achieved advanced development by using generative adversarial networks (GANs). Existing methods typically formulate GAN as a two-player game, where a discriminator distinguishes face images from the real and synthesized domains, while a generator reduces its discriminativeness by synthesizing a face of photorealistic quality. Their competition converges when the discriminator is unable to differentiate these two domains. Unlike two-player GANs, this work generates identity-preserving faces by proposing FaceID-GAN, which treats a classifier of face identity as the third player, competing with the generator by distinguishing the identities of the real and synthesized faces (see Fig.1). A stationary point is reached when the generator produces faces that have high quality as well as preserve identity. Instead of simply modeling the identity classifier as an additional discriminator, FaceID-GAN is formulated by satisfying information symmetry, which ensures that the real and synthesized images are projected into the same feature space. In other words, the identity classifier is used to extract identity features from both input (real) and output (synthesized) face images of the generator, substantially alleviating training difficulty of GAN. Extensive experiments show that FaceID-GAN is able to generate faces of arbitrary viewpoint while preserve identity, outperforming recent advanced approaches.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"821-830"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"150","resultStr":"{\"title\":\"FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis\",\"authors\":\"Yujun Shen, Ping Luo, Junjie Yan, Xiaogang Wang, Xiaoou Tang\",\"doi\":\"10.1109/CVPR.2018.00092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face synthesis has achieved advanced development by using generative adversarial networks (GANs). Existing methods typically formulate GAN as a two-player game, where a discriminator distinguishes face images from the real and synthesized domains, while a generator reduces its discriminativeness by synthesizing a face of photorealistic quality. Their competition converges when the discriminator is unable to differentiate these two domains. Unlike two-player GANs, this work generates identity-preserving faces by proposing FaceID-GAN, which treats a classifier of face identity as the third player, competing with the generator by distinguishing the identities of the real and synthesized faces (see Fig.1). A stationary point is reached when the generator produces faces that have high quality as well as preserve identity. Instead of simply modeling the identity classifier as an additional discriminator, FaceID-GAN is formulated by satisfying information symmetry, which ensures that the real and synthesized images are projected into the same feature space. In other words, the identity classifier is used to extract identity features from both input (real) and output (synthesized) face images of the generator, substantially alleviating training difficulty of GAN. Extensive experiments show that FaceID-GAN is able to generate faces of arbitrary viewpoint while preserve identity, outperforming recent advanced approaches.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"821-830\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"150\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis
Face synthesis has achieved advanced development by using generative adversarial networks (GANs). Existing methods typically formulate GAN as a two-player game, where a discriminator distinguishes face images from the real and synthesized domains, while a generator reduces its discriminativeness by synthesizing a face of photorealistic quality. Their competition converges when the discriminator is unable to differentiate these two domains. Unlike two-player GANs, this work generates identity-preserving faces by proposing FaceID-GAN, which treats a classifier of face identity as the third player, competing with the generator by distinguishing the identities of the real and synthesized faces (see Fig.1). A stationary point is reached when the generator produces faces that have high quality as well as preserve identity. Instead of simply modeling the identity classifier as an additional discriminator, FaceID-GAN is formulated by satisfying information symmetry, which ensures that the real and synthesized images are projected into the same feature space. In other words, the identity classifier is used to extract identity features from both input (real) and output (synthesized) face images of the generator, substantially alleviating training difficulty of GAN. Extensive experiments show that FaceID-GAN is able to generate faces of arbitrary viewpoint while preserve identity, outperforming recent advanced approaches.