Hongzhong Zhu, M. Sueyoshi, Changhong Hu, S. Yoshida
{"title":"极端工况下带铰链结构的海上浮式风电机组建模与姿态控制","authors":"Hongzhong Zhu, M. Sueyoshi, Changhong Hu, S. Yoshida","doi":"10.1109/ICRERA.2017.8191162","DOIUrl":null,"url":null,"abstract":"This paper addresses the modeling and attitude control of a novel shrouded floating wind turbine with hinged structure in harsh environmental conditions. Firstly, SimMechanics™ is applied to model the mechanical components of the wind turbine system. Secondly, the wave- and wind-loads acting on the system are respectively calculated based on Morison's equation and blade element momentum theory. Controllers of the elevator and the rudder located at the upwind side are designed based on linearized models to enhance the stability of the system. Numerical examples with three extreme weather conditions are finally performed to verify the effectiveness of the controllers. The results demonstrate that the pitching motion of the nacelle can be regulated to be within 3 degrees in the examples. In addition, the wind turbine could yaw itself stably toward the wind direction.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"114 1","pages":"762-767"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modelling and attitude control of a shrouded floating offshore wind turbine with hinged structure in extreme conditions\",\"authors\":\"Hongzhong Zhu, M. Sueyoshi, Changhong Hu, S. Yoshida\",\"doi\":\"10.1109/ICRERA.2017.8191162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the modeling and attitude control of a novel shrouded floating wind turbine with hinged structure in harsh environmental conditions. Firstly, SimMechanics™ is applied to model the mechanical components of the wind turbine system. Secondly, the wave- and wind-loads acting on the system are respectively calculated based on Morison's equation and blade element momentum theory. Controllers of the elevator and the rudder located at the upwind side are designed based on linearized models to enhance the stability of the system. Numerical examples with three extreme weather conditions are finally performed to verify the effectiveness of the controllers. The results demonstrate that the pitching motion of the nacelle can be regulated to be within 3 degrees in the examples. In addition, the wind turbine could yaw itself stably toward the wind direction.\",\"PeriodicalId\":6535,\"journal\":{\"name\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"volume\":\"114 1\",\"pages\":\"762-767\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2017.8191162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling and attitude control of a shrouded floating offshore wind turbine with hinged structure in extreme conditions
This paper addresses the modeling and attitude control of a novel shrouded floating wind turbine with hinged structure in harsh environmental conditions. Firstly, SimMechanics™ is applied to model the mechanical components of the wind turbine system. Secondly, the wave- and wind-loads acting on the system are respectively calculated based on Morison's equation and blade element momentum theory. Controllers of the elevator and the rudder located at the upwind side are designed based on linearized models to enhance the stability of the system. Numerical examples with three extreme weather conditions are finally performed to verify the effectiveness of the controllers. The results demonstrate that the pitching motion of the nacelle can be regulated to be within 3 degrees in the examples. In addition, the wind turbine could yaw itself stably toward the wind direction.