激光脉冲与陡峭密度梯度相互作用后的强烈ү-Ray爆发

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED Laser and Particle Beams Pub Date : 2022-06-18 DOI:10.1155/2022/3586372
S. Chintalwad, S. Krishnamurthy, S. Morris, B. Ramakrishna
{"title":"激光脉冲与陡峭密度梯度相互作用后的强烈ү-Ray爆发","authors":"S. Chintalwad, S. Krishnamurthy, S. Morris, B. Ramakrishna","doi":"10.1155/2022/3586372","DOIUrl":null,"url":null,"abstract":"We investigate the production of intense ү-rays following the interaction of ultraintense laser pulse with a hybrid combination of under-dense plasma associated with a thin foil of fully ionized Al or Cu or Au at the rear side. Relativistic electrons are accelerated following the interaction of high intensity laser pulses with an under-dense plasma. These electrons are then stopped by the thin foils attached to the rear side of the under-dense plasma. This results in the production of intense-ray bursts. So, the enhancement of photon generation is due to the under-dense plasma electrons interacting with different over-dense plasma. Using open-source PIC code EPOCH, we study the effect of different electron densities in the under-plasma on photon emission. Photon emission enhancement is observed by increasing the target Z in the hybrid structure. Hybrid structure can enhance photon emission; it can increase the photon energy and yield and improve photon beam divergence. Simulations were also performed to find the optimal under-dense plasma density for ү-ray production.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"30 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intense ү-Ray Bursts following the Interaction of Laser Pulse with Steep Density Gradients\",\"authors\":\"S. Chintalwad, S. Krishnamurthy, S. Morris, B. Ramakrishna\",\"doi\":\"10.1155/2022/3586372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the production of intense ү-rays following the interaction of ultraintense laser pulse with a hybrid combination of under-dense plasma associated with a thin foil of fully ionized Al or Cu or Au at the rear side. Relativistic electrons are accelerated following the interaction of high intensity laser pulses with an under-dense plasma. These electrons are then stopped by the thin foils attached to the rear side of the under-dense plasma. This results in the production of intense-ray bursts. So, the enhancement of photon generation is due to the under-dense plasma electrons interacting with different over-dense plasma. Using open-source PIC code EPOCH, we study the effect of different electron densities in the under-plasma on photon emission. Photon emission enhancement is observed by increasing the target Z in the hybrid structure. Hybrid structure can enhance photon emission; it can increase the photon energy and yield and improve photon beam divergence. Simulations were also performed to find the optimal under-dense plasma density for ү-ray production.\",\"PeriodicalId\":49925,\"journal\":{\"name\":\"Laser and Particle Beams\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser and Particle Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3586372\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/3586372","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了超强激光脉冲与低密度等离子体的混合组合相互作用后产生的强烈ү-rays,该混合组合与后部完全电离的Al或Cu或Au薄箔相关联。高强度激光脉冲与低密度等离子体相互作用后,相对论性电子被加速。这些电子随后被附着在低密度等离子体背面的薄片所阻挡。这就导致了强烈射线暴的产生。因此,光子产生的增强是由于低密度等离子体电子与不同密度等离子体相互作用的结果。利用开放源代码的PIC代码EPOCH,研究了等离子体下不同电子密度对光子发射的影响。在杂化结构中,通过增加靶Z可以观察到光子发射的增强。杂化结构可以增强光子发射;它可以提高光子的能量和产率,改善光子束发散。模拟也进行了寻找最佳的低密度等离子体密度为ү-ray生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intense ү-Ray Bursts following the Interaction of Laser Pulse with Steep Density Gradients
We investigate the production of intense ү-rays following the interaction of ultraintense laser pulse with a hybrid combination of under-dense plasma associated with a thin foil of fully ionized Al or Cu or Au at the rear side. Relativistic electrons are accelerated following the interaction of high intensity laser pulses with an under-dense plasma. These electrons are then stopped by the thin foils attached to the rear side of the under-dense plasma. This results in the production of intense-ray bursts. So, the enhancement of photon generation is due to the under-dense plasma electrons interacting with different over-dense plasma. Using open-source PIC code EPOCH, we study the effect of different electron densities in the under-plasma on photon emission. Photon emission enhancement is observed by increasing the target Z in the hybrid structure. Hybrid structure can enhance photon emission; it can increase the photon energy and yield and improve photon beam divergence. Simulations were also performed to find the optimal under-dense plasma density for ү-ray production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Laser and Particle Beams
Laser and Particle Beams PHYSICS, APPLIED-
CiteScore
1.90
自引率
11.10%
发文量
25
审稿时长
1 months
期刊介绍: Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.
期刊最新文献
Numerical analysis of X-ray multilayer Fresnel zone plates with high aspect ratios Hot electron emission characteristics from thin metal foil targets irradiated by terawatt laser Flux and estimated spectra from a low-intensity laser-driven X-ray source Numerical Study of Carbon Nanofoam Targets for Laser-Driven Inertial Fusion Experiments Helium as a Surrogate for Deuterium in LPI Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1