P. Luoto, M. Bennis, P. Pirinen, S. Samarakoon, K. Horneman, M. Latva-aho
{"title":"车辆集群,提高增强LTE-V2X网络性能","authors":"P. Luoto, M. Bennis, P. Pirinen, S. Samarakoon, K. Horneman, M. Latva-aho","doi":"10.1109/EuCNC.2017.7980735","DOIUrl":null,"url":null,"abstract":"Vehicle-to-Everything (V2X) communication holds the promise for improving road safety and reducing road accidents by enabling reliable and low latency services for vehicles. Vehicles are among the fastest growing type of connected devices. Therefore, there is a need for V2X communication, i.e., passing of information from Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) and vice versa. In this paper, we focus on both V2I and V2V communication in a multi-lane freeway scenario, where coverage is provided by the Long Term Evolution Advanced (LTE-A) road side unit (RSU) network. Here, we propose a mechanism to offload vehicles with low signal-to-interference-plus-noise ratio (SINR) to be served by other vehicles, which have much higher quality link to the RSU. Furthermore, we analyze the improvements in the probabilities of achieving target throughputs and the performance is assessed through extensive system-level simulations. Results show that the proposed solution offloads low quality V2I links to stronger V2V links, and further increases successful transmission probability from 93% to 99.4%.","PeriodicalId":6626,"journal":{"name":"2017 European Conference on Networks and Communications (EuCNC)","volume":"46 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Vehicle clustering for improving enhanced LTE-V2X network performance\",\"authors\":\"P. Luoto, M. Bennis, P. Pirinen, S. Samarakoon, K. Horneman, M. Latva-aho\",\"doi\":\"10.1109/EuCNC.2017.7980735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle-to-Everything (V2X) communication holds the promise for improving road safety and reducing road accidents by enabling reliable and low latency services for vehicles. Vehicles are among the fastest growing type of connected devices. Therefore, there is a need for V2X communication, i.e., passing of information from Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) and vice versa. In this paper, we focus on both V2I and V2V communication in a multi-lane freeway scenario, where coverage is provided by the Long Term Evolution Advanced (LTE-A) road side unit (RSU) network. Here, we propose a mechanism to offload vehicles with low signal-to-interference-plus-noise ratio (SINR) to be served by other vehicles, which have much higher quality link to the RSU. Furthermore, we analyze the improvements in the probabilities of achieving target throughputs and the performance is assessed through extensive system-level simulations. Results show that the proposed solution offloads low quality V2I links to stronger V2V links, and further increases successful transmission probability from 93% to 99.4%.\",\"PeriodicalId\":6626,\"journal\":{\"name\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"46 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2017.7980735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2017.7980735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vehicle clustering for improving enhanced LTE-V2X network performance
Vehicle-to-Everything (V2X) communication holds the promise for improving road safety and reducing road accidents by enabling reliable and low latency services for vehicles. Vehicles are among the fastest growing type of connected devices. Therefore, there is a need for V2X communication, i.e., passing of information from Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) and vice versa. In this paper, we focus on both V2I and V2V communication in a multi-lane freeway scenario, where coverage is provided by the Long Term Evolution Advanced (LTE-A) road side unit (RSU) network. Here, we propose a mechanism to offload vehicles with low signal-to-interference-plus-noise ratio (SINR) to be served by other vehicles, which have much higher quality link to the RSU. Furthermore, we analyze the improvements in the probabilities of achieving target throughputs and the performance is assessed through extensive system-level simulations. Results show that the proposed solution offloads low quality V2I links to stronger V2V links, and further increases successful transmission probability from 93% to 99.4%.