利用改进的灰狼优化的MobileNetV2卷积神经网络架构驱动的计算机视觉框架对番茄植株病害类型进行识别

G. Mukherjee, Arpitam Chatterjee, B. Tudu
{"title":"利用改进的灰狼优化的MobileNetV2卷积神经网络架构驱动的计算机视觉框架对番茄植株病害类型进行识别","authors":"G. Mukherjee, Arpitam Chatterjee, B. Tudu","doi":"10.1002/cpe.7161","DOIUrl":null,"url":null,"abstract":"Tomato is a widely consumed fruit across the world due to its high nutritional values. Leaf diseases in tomato are very common which incurs huge damages but early detection of leaf diseases can help in avoiding that. The existing practices for detecting different diseases by the human experts are costly, time consuming and subjective in nature. Computer vision plays important role toward early detection of tomato leaf detection. However, implementation of computationally less expensive model and improvement of detection performance is still open. This article reports a computer vision based system to classify seven different categories of diseases, namely, bacterial spot, early blight, late blight, leaf mold, septoria leaf spot, spider mites, and target spots using optimized MobileNetV2 architecture. A modified gray wolf optimization approach has been adopted for optimization of MobileNetV2 hyperparameters for improved performance. The model has been validated using standard internal and external validation methods and found to provide the classification accuracy in the tune of 98%. The results reflect the promising potential of the presented framework for early detection of tomato leaf diseases which can help to avoid substantial agricultural loss.","PeriodicalId":10584,"journal":{"name":"Concurrency and Computation: Practice and Experience","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification of the types of disease for tomato plants using a modified gray wolf optimization optimized MobileNetV2 convolutional neural network architecture driven computer vision framework\",\"authors\":\"G. Mukherjee, Arpitam Chatterjee, B. Tudu\",\"doi\":\"10.1002/cpe.7161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tomato is a widely consumed fruit across the world due to its high nutritional values. Leaf diseases in tomato are very common which incurs huge damages but early detection of leaf diseases can help in avoiding that. The existing practices for detecting different diseases by the human experts are costly, time consuming and subjective in nature. Computer vision plays important role toward early detection of tomato leaf detection. However, implementation of computationally less expensive model and improvement of detection performance is still open. This article reports a computer vision based system to classify seven different categories of diseases, namely, bacterial spot, early blight, late blight, leaf mold, septoria leaf spot, spider mites, and target spots using optimized MobileNetV2 architecture. A modified gray wolf optimization approach has been adopted for optimization of MobileNetV2 hyperparameters for improved performance. The model has been validated using standard internal and external validation methods and found to provide the classification accuracy in the tune of 98%. The results reflect the promising potential of the presented framework for early detection of tomato leaf diseases which can help to avoid substantial agricultural loss.\",\"PeriodicalId\":10584,\"journal\":{\"name\":\"Concurrency and Computation: Practice and Experience\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation: Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpe.7161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpe.7161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于其高营养价值,西红柿是世界上广泛食用的水果。番茄叶片病害十分普遍,危害巨大,及早发现叶片病害可有效防治。现有的由人类专家检测不同疾病的做法是昂贵、耗时和主观的。计算机视觉在番茄叶片的早期检测中起着重要的作用。然而,实现计算成本更低的模型和提高检测性能仍然是开放的。本文报道了一种基于计算机视觉的系统,利用优化后的MobileNetV2架构,对细菌性斑病、早疫病、晚疫病、叶霉病、间隔叶斑病、蜘蛛螨和目标斑等7类病害进行分类。采用改进的灰狼优化方法对MobileNetV2超参数进行优化,以提高性能。使用标准的内部和外部验证方法对模型进行了验证,发现该模型提供了98%的分类准确率。这些结果反映了所提出的框架在番茄叶病早期检测方面的巨大潜力,可以帮助避免重大的农业损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of the types of disease for tomato plants using a modified gray wolf optimization optimized MobileNetV2 convolutional neural network architecture driven computer vision framework
Tomato is a widely consumed fruit across the world due to its high nutritional values. Leaf diseases in tomato are very common which incurs huge damages but early detection of leaf diseases can help in avoiding that. The existing practices for detecting different diseases by the human experts are costly, time consuming and subjective in nature. Computer vision plays important role toward early detection of tomato leaf detection. However, implementation of computationally less expensive model and improvement of detection performance is still open. This article reports a computer vision based system to classify seven different categories of diseases, namely, bacterial spot, early blight, late blight, leaf mold, septoria leaf spot, spider mites, and target spots using optimized MobileNetV2 architecture. A modified gray wolf optimization approach has been adopted for optimization of MobileNetV2 hyperparameters for improved performance. The model has been validated using standard internal and external validation methods and found to provide the classification accuracy in the tune of 98%. The results reflect the promising potential of the presented framework for early detection of tomato leaf diseases which can help to avoid substantial agricultural loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time‐based DDoS attack detection through hybrid LSTM‐CNN model architectures: An investigation of many‐to‐one and many‐to‐many approaches Distributed low‐latency broadcast scheduling for multi‐channel duty‐cycled wireless IoT networks Open‐domain event schema induction via weighted attentive hypergraph neural network Fused GEMMs towards an efficient GPU implementation of the ADER‐DG method in SeisSol Simulation method for infrared radiation transmission characteristics of typical ship targets based on optical remote sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1