基于天气的风力发电预报机器学习技术

A. Dolara, A. Gandelli, F. Grimaccia, S. Leva, M. Mussetta
{"title":"基于天气的风力发电预报机器学习技术","authors":"A. Dolara, A. Gandelli, F. Grimaccia, S. Leva, M. Mussetta","doi":"10.1109/ICRERA.2017.8191267","DOIUrl":null,"url":null,"abstract":"This paper presents the development of forecast models for a wind farm producibility with a 24 hours horizon. The aim is to obtain accurate wind power predictions by using feedforward artificial neural networks. In particular, different forecasting models are developed and for each of them the best architecture is researched by means of sensitivity analysis, modifying the main parameters of the artificial neural network. The results obtained are compared with the forecasts provided by numerical weather prediction models (NWP).","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"32 1","pages":"206-209"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Weather-based machine learning technique for Day-Ahead wind power forecasting\",\"authors\":\"A. Dolara, A. Gandelli, F. Grimaccia, S. Leva, M. Mussetta\",\"doi\":\"10.1109/ICRERA.2017.8191267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of forecast models for a wind farm producibility with a 24 hours horizon. The aim is to obtain accurate wind power predictions by using feedforward artificial neural networks. In particular, different forecasting models are developed and for each of them the best architecture is researched by means of sensitivity analysis, modifying the main parameters of the artificial neural network. The results obtained are compared with the forecasts provided by numerical weather prediction models (NWP).\",\"PeriodicalId\":6535,\"journal\":{\"name\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"volume\":\"32 1\",\"pages\":\"206-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2017.8191267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文介绍了24小时视界风电场发电能力预报模型的发展。目的是通过前馈人工神经网络获得准确的风力预测。特别地,建立了不同的预测模型,并通过灵敏度分析和修改人工神经网络的主要参数,研究了每种预测模型的最佳结构。所得结果与数值天气预报模式(NWP)提供的预报结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weather-based machine learning technique for Day-Ahead wind power forecasting
This paper presents the development of forecast models for a wind farm producibility with a 24 hours horizon. The aim is to obtain accurate wind power predictions by using feedforward artificial neural networks. In particular, different forecasting models are developed and for each of them the best architecture is researched by means of sensitivity analysis, modifying the main parameters of the artificial neural network. The results obtained are compared with the forecasts provided by numerical weather prediction models (NWP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of AC link topologies in non-isolated DC/DC triple active bridge converter for current stress minimization Modelling and attitude control of a shrouded floating offshore wind turbine with hinged structure in extreme conditions Direct load control of air conditioners in Qatar: An empirical study Stochastic unit commitment considering Markov process of wind power forecast Primary and secondary voltage/frequency controller design for energy storage devices using consensus theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1