{"title":"库仑散射微观处理下量子点激光器的多物种建模","authors":"U. Bandelow, T. Koprucki, A. Wilms, A. Knorr","doi":"10.1109/NUSOD.2010.5595668","DOIUrl":null,"url":null,"abstract":"We present a spatially resolved semiclassical model for the simulation of semiconductor quantum-dot (QD) lasers including a multi-species description for the carriers along the optical active region. The model links microscopic determined quantities like scattering rates between the different species and dephasing times, that depend essentially on the carrier densities, with macroscopic transport equations and equations for the optical field.","PeriodicalId":6780,"journal":{"name":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"41 1","pages":"59-60"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-species modeling of quantum dot lasers with microscopic treatment of coulomb scattering\",\"authors\":\"U. Bandelow, T. Koprucki, A. Wilms, A. Knorr\",\"doi\":\"10.1109/NUSOD.2010.5595668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a spatially resolved semiclassical model for the simulation of semiconductor quantum-dot (QD) lasers including a multi-species description for the carriers along the optical active region. The model links microscopic determined quantities like scattering rates between the different species and dephasing times, that depend essentially on the carrier densities, with macroscopic transport equations and equations for the optical field.\",\"PeriodicalId\":6780,\"journal\":{\"name\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"41 1\",\"pages\":\"59-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2010.5595668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2010.5595668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-species modeling of quantum dot lasers with microscopic treatment of coulomb scattering
We present a spatially resolved semiclassical model for the simulation of semiconductor quantum-dot (QD) lasers including a multi-species description for the carriers along the optical active region. The model links microscopic determined quantities like scattering rates between the different species and dephasing times, that depend essentially on the carrier densities, with macroscopic transport equations and equations for the optical field.