新型制冷剂混合料的性能研究

E. Khorshid, B. Alshriaan, A. Alsairafi, A. Alazemi, A. Alhaddad
{"title":"新型制冷剂混合料的性能研究","authors":"E. Khorshid, B. Alshriaan, A. Alsairafi, A. Alazemi, A. Alhaddad","doi":"10.1109/ICMSAO.2011.5775612","DOIUrl":null,"url":null,"abstract":"This research presents a theoretical investigation on the performance of a vapour compression refrigerating system using different mixtures of Hydrocarbons and Hydrofluorocarbons refrigerants as a refrigerant. Genetic Algorithm method was used to solve a nonlinear constrained optimization problem for the selection of the best blend. The performance of new mixtures of Hydrocarbons and Hydrofluorocarbons refrigerants is compared with the performance of R-134a. The optimal solution of the new blend is has an improvement of 11.9% in the coefficient of performance over the currently used blend of R134a.","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance investigation on new refrigerant mixture\",\"authors\":\"E. Khorshid, B. Alshriaan, A. Alsairafi, A. Alazemi, A. Alhaddad\",\"doi\":\"10.1109/ICMSAO.2011.5775612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents a theoretical investigation on the performance of a vapour compression refrigerating system using different mixtures of Hydrocarbons and Hydrofluorocarbons refrigerants as a refrigerant. Genetic Algorithm method was used to solve a nonlinear constrained optimization problem for the selection of the best blend. The performance of new mixtures of Hydrocarbons and Hydrofluorocarbons refrigerants is compared with the performance of R-134a. The optimal solution of the new blend is has an improvement of 11.9% in the coefficient of performance over the currently used blend of R134a.\",\"PeriodicalId\":6383,\"journal\":{\"name\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSAO.2011.5775612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究对使用不同碳氢化合物和氢氟烃制冷剂混合物作为制冷剂的蒸汽压缩制冷系统的性能进行了理论研究。采用遗传算法求解最佳混合料选择的非线性约束优化问题。对新型碳氢化合物和氢氟烃混合制冷剂的性能与R-134a的性能进行了比较。与目前使用的R134a共混物相比,新共混物的性能系数提高了11.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance investigation on new refrigerant mixture
This research presents a theoretical investigation on the performance of a vapour compression refrigerating system using different mixtures of Hydrocarbons and Hydrofluorocarbons refrigerants as a refrigerant. Genetic Algorithm method was used to solve a nonlinear constrained optimization problem for the selection of the best blend. The performance of new mixtures of Hydrocarbons and Hydrofluorocarbons refrigerants is compared with the performance of R-134a. The optimal solution of the new blend is has an improvement of 11.9% in the coefficient of performance over the currently used blend of R134a.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact and Scope of Electric Power Generation Demand Using Renewable Energy Resources Due to COVID-19 Introductory Lectures on Convex Optimization - A Basic Course Development of energy harvesting device using piezoelectric material Modelling and simulation of solar chimney power plant performances in southern region of Algeria A sequential approach for fault detection and identification of vehicles' ultrasonic parking sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1