Lingfei Wang, Wei Zhang, Zheyu Wang, Tsz Fung Poon, Wenyan Wang, Chun Wai Tsang, Jianyu Xie, Xuefeng Zhou, Yusheng Zhao, Shanmin Wang, K. Lai, S. Goh
{"title":"kagome金属RbV3Sb5电荷密度波态的反常霍尔效应和二维费米面","authors":"Lingfei Wang, Wei Zhang, Zheyu Wang, Tsz Fung Poon, Wenyan Wang, Chun Wai Tsang, Jianyu Xie, Xuefeng Zhou, Yusheng Zhao, Shanmin Wang, K. Lai, S. Goh","doi":"10.1088/2515-7639/acba46","DOIUrl":null,"url":null,"abstract":"AV3Sb5 (A = Cs, K, Rb) is a recently discovered superconducting system ( Tc∼0.9 –2.5 K) in which the vanadium atoms adopt the kagome structure. Intriguingly, these systems enter a charge-density-wave (CDW) phase ( TCDW∼80 –100 K), and further evidence shows that the time-reversal symmetry is broken in the CDW phase. Concurrently, the anomalous Hall effect (AHE) has been observed in KV3Sb5 and CsV3Sb5 inside the novel CDW phase. Here, we report a comprehensive study of a high-quality RbV3Sb5 single crystal with magnetotransport measurements. Our data demonstrate the emergence of the AHE in RbV3Sb5 when the CDW state develops. The magnitude of the anomalous Hall resistivity in the low temperature limit is comparable to the reported values in KV3Sb5 and CsV3Sb5. The magnetoresistance channel further reveals a rich spectrum of quantum oscillation frequencies, many of which have not been reported before. In particular, a large quantum oscillation frequency (2235 T), which occupies ∼56% of the Brillouin zone area, was recorded. For the quantum oscillation frequencies with sufficient signal-to-noise ratio, we further perform field angle-dependent measurements, and our data indicate two-dimensional Fermi surfaces in RbV3Sb5. Our results provide indispensable information for understanding the AHE and band structure in kagome metal AV3Sb5.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"18 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Anomalous Hall effect and two-dimensional Fermi surfaces in the charge-density-wave state of kagome metal RbV3Sb5\",\"authors\":\"Lingfei Wang, Wei Zhang, Zheyu Wang, Tsz Fung Poon, Wenyan Wang, Chun Wai Tsang, Jianyu Xie, Xuefeng Zhou, Yusheng Zhao, Shanmin Wang, K. Lai, S. Goh\",\"doi\":\"10.1088/2515-7639/acba46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AV3Sb5 (A = Cs, K, Rb) is a recently discovered superconducting system ( Tc∼0.9 –2.5 K) in which the vanadium atoms adopt the kagome structure. Intriguingly, these systems enter a charge-density-wave (CDW) phase ( TCDW∼80 –100 K), and further evidence shows that the time-reversal symmetry is broken in the CDW phase. Concurrently, the anomalous Hall effect (AHE) has been observed in KV3Sb5 and CsV3Sb5 inside the novel CDW phase. Here, we report a comprehensive study of a high-quality RbV3Sb5 single crystal with magnetotransport measurements. Our data demonstrate the emergence of the AHE in RbV3Sb5 when the CDW state develops. The magnitude of the anomalous Hall resistivity in the low temperature limit is comparable to the reported values in KV3Sb5 and CsV3Sb5. The magnetoresistance channel further reveals a rich spectrum of quantum oscillation frequencies, many of which have not been reported before. In particular, a large quantum oscillation frequency (2235 T), which occupies ∼56% of the Brillouin zone area, was recorded. For the quantum oscillation frequencies with sufficient signal-to-noise ratio, we further perform field angle-dependent measurements, and our data indicate two-dimensional Fermi surfaces in RbV3Sb5. Our results provide indispensable information for understanding the AHE and band structure in kagome metal AV3Sb5.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/acba46\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/acba46","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Anomalous Hall effect and two-dimensional Fermi surfaces in the charge-density-wave state of kagome metal RbV3Sb5
AV3Sb5 (A = Cs, K, Rb) is a recently discovered superconducting system ( Tc∼0.9 –2.5 K) in which the vanadium atoms adopt the kagome structure. Intriguingly, these systems enter a charge-density-wave (CDW) phase ( TCDW∼80 –100 K), and further evidence shows that the time-reversal symmetry is broken in the CDW phase. Concurrently, the anomalous Hall effect (AHE) has been observed in KV3Sb5 and CsV3Sb5 inside the novel CDW phase. Here, we report a comprehensive study of a high-quality RbV3Sb5 single crystal with magnetotransport measurements. Our data demonstrate the emergence of the AHE in RbV3Sb5 when the CDW state develops. The magnitude of the anomalous Hall resistivity in the low temperature limit is comparable to the reported values in KV3Sb5 and CsV3Sb5. The magnetoresistance channel further reveals a rich spectrum of quantum oscillation frequencies, many of which have not been reported before. In particular, a large quantum oscillation frequency (2235 T), which occupies ∼56% of the Brillouin zone area, was recorded. For the quantum oscillation frequencies with sufficient signal-to-noise ratio, we further perform field angle-dependent measurements, and our data indicate two-dimensional Fermi surfaces in RbV3Sb5. Our results provide indispensable information for understanding the AHE and band structure in kagome metal AV3Sb5.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.