使用受限的事务内存构建可扩展的内存内数据库

Zhaoguo Wang, Hao Qian, Jinyang Li, Haibo Chen
{"title":"使用受限的事务内存构建可扩展的内存内数据库","authors":"Zhaoguo Wang, Hao Qian, Jinyang Li, Haibo Chen","doi":"10.1145/2592798.2592815","DOIUrl":null,"url":null,"abstract":"The recent availability of Intel Haswell processors marks the transition of hardware transactional memory from research toys to mainstream reality. DBX is an in-memory database that uses Intel's restricted transactional memory (RTM) to achieve high performance and good scalability across multi-core machines. The main limitation (and also key to practicality) of RTM is its constrained working set size: an RTM region that reads or writes too much data will always be aborted. The design of DBX addresses this challenge in several ways. First, DBX builds a database transaction layer on top of an underlying shared-memory store. The two layers use separate RTM regions to synchronize shared memory access. Second, DBX uses optimistic concurrency control to separate transaction execution from its commit. Only the commit stage uses RTM for synchronization. As a result, the working set of the RTMs used scales with the meta-data of reads and writes in a database transaction as opposed to the amount of data read/written. Our evaluation using TPC-C workload mix shows that DBX achieves 506,817 transactions per second on a 4-core machine.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"67 1","pages":"26:1-26:15"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Using restricted transactional memory to build a scalable in-memory database\",\"authors\":\"Zhaoguo Wang, Hao Qian, Jinyang Li, Haibo Chen\",\"doi\":\"10.1145/2592798.2592815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent availability of Intel Haswell processors marks the transition of hardware transactional memory from research toys to mainstream reality. DBX is an in-memory database that uses Intel's restricted transactional memory (RTM) to achieve high performance and good scalability across multi-core machines. The main limitation (and also key to practicality) of RTM is its constrained working set size: an RTM region that reads or writes too much data will always be aborted. The design of DBX addresses this challenge in several ways. First, DBX builds a database transaction layer on top of an underlying shared-memory store. The two layers use separate RTM regions to synchronize shared memory access. Second, DBX uses optimistic concurrency control to separate transaction execution from its commit. Only the commit stage uses RTM for synchronization. As a result, the working set of the RTMs used scales with the meta-data of reads and writes in a database transaction as opposed to the amount of data read/written. Our evaluation using TPC-C workload mix shows that DBX achieves 506,817 transactions per second on a 4-core machine.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"67 1\",\"pages\":\"26:1-26:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2592798.2592815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2592798.2592815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

最近英特尔Haswell处理器的出现标志着硬件事务性内存从研究玩具到主流现实的转变。DBX是一种内存数据库,它使用Intel的受限事务性内存(RTM)来实现跨多核机器的高性能和良好的可伸缩性。RTM的主要限制(也是实用性的关键)是其受限的工作集大小:读取或写入过多数据的RTM区域总是会被终止。DBX的设计从几个方面解决了这一挑战。首先,DBX在底层共享内存存储之上构建数据库事务层。这两层使用单独的RTM区域来同步共享内存访问。其次,DBX使用乐观并发控制将事务执行与其提交分开。只有提交阶段使用RTM进行同步。因此,所使用的rtm的工作集随数据库事务中读写的元数据而变化,而不是随读/写的数据量变化。我们使用TPC-C工作负载组合进行的评估显示,DBX在4核机器上实现了每秒506,817个事务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using restricted transactional memory to build a scalable in-memory database
The recent availability of Intel Haswell processors marks the transition of hardware transactional memory from research toys to mainstream reality. DBX is an in-memory database that uses Intel's restricted transactional memory (RTM) to achieve high performance and good scalability across multi-core machines. The main limitation (and also key to practicality) of RTM is its constrained working set size: an RTM region that reads or writes too much data will always be aborted. The design of DBX addresses this challenge in several ways. First, DBX builds a database transaction layer on top of an underlying shared-memory store. The two layers use separate RTM regions to synchronize shared memory access. Second, DBX uses optimistic concurrency control to separate transaction execution from its commit. Only the commit stage uses RTM for synchronization. As a result, the working set of the RTMs used scales with the meta-data of reads and writes in a database transaction as opposed to the amount of data read/written. Our evaluation using TPC-C workload mix shows that DBX achieves 506,817 transactions per second on a 4-core machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EuroSys '22: Seventeenth European Conference on Computer Systems, Rennes, France, April 5 - 8, 2022 EuroSys '21: Sixteenth European Conference on Computer Systems, Online Event, United Kingdom, April 26-28, 2021 EuroSys '20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020 STRADS: a distributed framework for scheduled model parallel machine learning NChecker: saving mobile app developers from network disruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1