基于张量岭回归的高光谱图像分类

Jianjun Liu, Hao Chen, Songze Tang, Jinlong Yang, Hong Yan
{"title":"基于张量岭回归的高光谱图像分类","authors":"Jianjun Liu, Hao Chen, Songze Tang, Jinlong Yang, Hong Yan","doi":"10.1109/IGARSS.2019.8899896","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the ridge regression for multivariate labels by modelling each pixel and its surrounding pixels as a 3D tensor, and thereby propose a tensor ridge regression approach (TRR) for spatial-spectral hyperspectral image classification. Compared with the traditional ridge regression model, not only the spatial information is incorporated, but also the intrinsic spatial-spectral structure is captured. Moreover, the proposed TRR method is universal that it can be adopted to deal with the fusion of multiscale features for classification purpose. Experiment results conducted on two hyperspectral scenes demonstrate the effectiveness of the proposed method.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"307 2 1","pages":"1156-1159"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral Image Classification Via Tensor Ridge Regression\",\"authors\":\"Jianjun Liu, Hao Chen, Songze Tang, Jinlong Yang, Hong Yan\",\"doi\":\"10.1109/IGARSS.2019.8899896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the ridge regression for multivariate labels by modelling each pixel and its surrounding pixels as a 3D tensor, and thereby propose a tensor ridge regression approach (TRR) for spatial-spectral hyperspectral image classification. Compared with the traditional ridge regression model, not only the spatial information is incorporated, but also the intrinsic spatial-spectral structure is captured. Moreover, the proposed TRR method is universal that it can be adopted to deal with the fusion of multiscale features for classification purpose. Experiment results conducted on two hyperspectral scenes demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"307 2 1\",\"pages\":\"1156-1159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8899896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过将每个像素及其周围像素建模为三维张量来研究多元标签的脊回归,从而提出了一种用于空间光谱高光谱图像分类的张量脊回归方法(TRR)。与传统的脊回归模型相比,不仅吸收了空间信息,而且捕获了固有的空间光谱结构。此外,所提出的TRR方法具有通用性,可用于处理多尺度特征融合的分类问题。在两个高光谱场景下的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral Image Classification Via Tensor Ridge Regression
In this paper, we investigate the ridge regression for multivariate labels by modelling each pixel and its surrounding pixels as a 3D tensor, and thereby propose a tensor ridge regression approach (TRR) for spatial-spectral hyperspectral image classification. Compared with the traditional ridge regression model, not only the spatial information is incorporated, but also the intrinsic spatial-spectral structure is captured. Moreover, the proposed TRR method is universal that it can be adopted to deal with the fusion of multiscale features for classification purpose. Experiment results conducted on two hyperspectral scenes demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1