Minghui Jiang, M. Hang, Yubing Yang, Teng-fei Cheng, Hao Wang, Gang Zhou
{"title":"不同缓蚀剂对钢筋腐蚀的缓蚀效果及双掺后的改善效果","authors":"Minghui Jiang, M. Hang, Yubing Yang, Teng-fei Cheng, Hao Wang, Gang Zhou","doi":"10.11648/j.sjc.20210904.13","DOIUrl":null,"url":null,"abstract":"Reinforced concrete structures are easily corroded in the Salt Lake areas of China, especially in harsh environmental circumstance, such as freezing-thawing cycles, wetting-dry, et al, thus causing a lot of damage problems (concrete deterioration and steel bars corrosion). This research investigation was a research study which was to solve the corrosion problem of reinforced concrete structures under the chloride environmental circumstance through the electrochemical performance and mechanical properties test of the reinforced mortar specimens, the effect of single or compound doping of two organic and two inorganic corrosion inhibitors to the electrode potential, electrochemical impedance spectroscopy and mechanical properties of the reinforced mortar were investigated. The experimental conclusion demonstrated that the organic or inorganic corrosion inhibitors after single and compound doping showed some degree influence on the electrode potential and mechanical properties of the reinforced mortar specimens. Meanwhile, when the ratio of triethanolamine (TEA):triisopropanolamine (TIPA) was 7:3, sodium monofluorophosphate (MFP):sodium molybdate was 5:5, the compressive strength and flexural strength of mortar after curing for 28 days were greater than 90%, it indicated that these proportions showed the best corrosion resistance performance of steel bars. Therefore, these proportions of corrosion inhibitors could be used in reinforced concrete structures. The significant was that these results could provide theoretical guidance and technical basis for the study of corrosion damage of reinforced concrete structures in the future.","PeriodicalId":21607,"journal":{"name":"Science Journal of Chemistry","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inhibition Effect of Different Corrosion Inhibitors on Steel Bars Corrosion and Improvement Effect After Double Doped\",\"authors\":\"Minghui Jiang, M. Hang, Yubing Yang, Teng-fei Cheng, Hao Wang, Gang Zhou\",\"doi\":\"10.11648/j.sjc.20210904.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforced concrete structures are easily corroded in the Salt Lake areas of China, especially in harsh environmental circumstance, such as freezing-thawing cycles, wetting-dry, et al, thus causing a lot of damage problems (concrete deterioration and steel bars corrosion). This research investigation was a research study which was to solve the corrosion problem of reinforced concrete structures under the chloride environmental circumstance through the electrochemical performance and mechanical properties test of the reinforced mortar specimens, the effect of single or compound doping of two organic and two inorganic corrosion inhibitors to the electrode potential, electrochemical impedance spectroscopy and mechanical properties of the reinforced mortar were investigated. The experimental conclusion demonstrated that the organic or inorganic corrosion inhibitors after single and compound doping showed some degree influence on the electrode potential and mechanical properties of the reinforced mortar specimens. Meanwhile, when the ratio of triethanolamine (TEA):triisopropanolamine (TIPA) was 7:3, sodium monofluorophosphate (MFP):sodium molybdate was 5:5, the compressive strength and flexural strength of mortar after curing for 28 days were greater than 90%, it indicated that these proportions showed the best corrosion resistance performance of steel bars. Therefore, these proportions of corrosion inhibitors could be used in reinforced concrete structures. The significant was that these results could provide theoretical guidance and technical basis for the study of corrosion damage of reinforced concrete structures in the future.\",\"PeriodicalId\":21607,\"journal\":{\"name\":\"Science Journal of Chemistry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.sjc.20210904.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.sjc.20210904.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibition Effect of Different Corrosion Inhibitors on Steel Bars Corrosion and Improvement Effect After Double Doped
Reinforced concrete structures are easily corroded in the Salt Lake areas of China, especially in harsh environmental circumstance, such as freezing-thawing cycles, wetting-dry, et al, thus causing a lot of damage problems (concrete deterioration and steel bars corrosion). This research investigation was a research study which was to solve the corrosion problem of reinforced concrete structures under the chloride environmental circumstance through the electrochemical performance and mechanical properties test of the reinforced mortar specimens, the effect of single or compound doping of two organic and two inorganic corrosion inhibitors to the electrode potential, electrochemical impedance spectroscopy and mechanical properties of the reinforced mortar were investigated. The experimental conclusion demonstrated that the organic or inorganic corrosion inhibitors after single and compound doping showed some degree influence on the electrode potential and mechanical properties of the reinforced mortar specimens. Meanwhile, when the ratio of triethanolamine (TEA):triisopropanolamine (TIPA) was 7:3, sodium monofluorophosphate (MFP):sodium molybdate was 5:5, the compressive strength and flexural strength of mortar after curing for 28 days were greater than 90%, it indicated that these proportions showed the best corrosion resistance performance of steel bars. Therefore, these proportions of corrosion inhibitors could be used in reinforced concrete structures. The significant was that these results could provide theoretical guidance and technical basis for the study of corrosion damage of reinforced concrete structures in the future.