结合新分类的增量PSVM水下目标分类

Poonam Panchal, S. Gopi, R. Pradeepa
{"title":"结合新分类的增量PSVM水下目标分类","authors":"Poonam Panchal, S. Gopi, R. Pradeepa","doi":"10.1109/ICCCNT.2013.6726498","DOIUrl":null,"url":null,"abstract":"This paper describes a novel incremental PSVM to incorporate new target class information unavailable previously in the underwater target classification system. It is capable of updating already existing multiclass `One against Rest' Proximal Support Vector Machine classifier on arrival of features of new classes. The performance of the algorithm is studied on real data. Simulation establishes the effectiveness of the algorithm in adding samples of new classes or of existing classes into the training set incrementally without much affecting the storage space and computation.","PeriodicalId":6330,"journal":{"name":"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","volume":"3 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental PSVM for underwater target classification with incorporation of new classes\",\"authors\":\"Poonam Panchal, S. Gopi, R. Pradeepa\",\"doi\":\"10.1109/ICCCNT.2013.6726498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel incremental PSVM to incorporate new target class information unavailable previously in the underwater target classification system. It is capable of updating already existing multiclass `One against Rest' Proximal Support Vector Machine classifier on arrival of features of new classes. The performance of the algorithm is studied on real data. Simulation establishes the effectiveness of the algorithm in adding samples of new classes or of existing classes into the training set incrementally without much affecting the storage space and computation.\",\"PeriodicalId\":6330,\"journal\":{\"name\":\"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)\",\"volume\":\"3 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCNT.2013.6726498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2013.6726498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的增量式PSVM方法,将水下目标分类系统中无法获得的新目标类别信息纳入其中。它能够在新类的特征到来时更新已经存在的多类“One against Rest”近端支持向量机分类器。在实际数据中研究了该算法的性能。仿真验证了该算法在不影响存储空间和计算量的情况下,将新类或现有类的样本增量地添加到训练集中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incremental PSVM for underwater target classification with incorporation of new classes
This paper describes a novel incremental PSVM to incorporate new target class information unavailable previously in the underwater target classification system. It is capable of updating already existing multiclass `One against Rest' Proximal Support Vector Machine classifier on arrival of features of new classes. The performance of the algorithm is studied on real data. Simulation establishes the effectiveness of the algorithm in adding samples of new classes or of existing classes into the training set incrementally without much affecting the storage space and computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Multi-tenant SaaS cloud” Reduced order linear functional observers for large scale linear discrete-time control systems Multi pattern matching technique on fragmented and out-of-order packet streams for intrusion detection system Detection and tracking of moving objects by fuzzy textures Evacuation map generation using maze routing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1