热带大型报告厅地层通风设计准则的初步评价

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Ventilation Pub Date : 2023-01-02 DOI:10.1080/14733315.2022.2161142
Y. Yau, Y. Chuah, K. Chuah, U. Rajput, H. J. Liew
{"title":"热带大型报告厅地层通风设计准则的初步评价","authors":"Y. Yau, Y. Chuah, K. Chuah, U. Rajput, H. J. Liew","doi":"10.1080/14733315.2022.2161142","DOIUrl":null,"url":null,"abstract":"Abstract This article presents a study conducted to test the design guidelines of stratum ventilation (SV) for the conditions set in the tropics (Malaysia). Three different ventilation strategies and six different cases for SV were designed and examined by varying the layout of the return outlets and the air change per hour values. The ventilation strategy with a return outlet at the same level on opposite wall was found better than others. The simulation results of the medium-size room show that the thermal comfort is only favourable up to the centre region. Locations near the diffusers were noticed too cold and locations far away were too warm. In addition, the air flow pattern shows that the room has a high PPD due to quasi-stagnant zones that exist between the air jets from the diffusers. A similar condition does not exist in the small-size room, which was found under the acceptable range of PPD index (0%–25%). The ventilation strategy-1 (VS-1) is found with a greater energy saving with EUC 1.45 for the small room and 1.50 for the medium room compared to the other two ventilation strategies. The SV design guidelines are found adequate for the need of thermal comfort.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"29 1","pages":"77 - 99"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The preliminary evaluation of design guidelines of stratum ventilation in a large tropical lecture hall\",\"authors\":\"Y. Yau, Y. Chuah, K. Chuah, U. Rajput, H. J. Liew\",\"doi\":\"10.1080/14733315.2022.2161142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents a study conducted to test the design guidelines of stratum ventilation (SV) for the conditions set in the tropics (Malaysia). Three different ventilation strategies and six different cases for SV were designed and examined by varying the layout of the return outlets and the air change per hour values. The ventilation strategy with a return outlet at the same level on opposite wall was found better than others. The simulation results of the medium-size room show that the thermal comfort is only favourable up to the centre region. Locations near the diffusers were noticed too cold and locations far away were too warm. In addition, the air flow pattern shows that the room has a high PPD due to quasi-stagnant zones that exist between the air jets from the diffusers. A similar condition does not exist in the small-size room, which was found under the acceptable range of PPD index (0%–25%). The ventilation strategy-1 (VS-1) is found with a greater energy saving with EUC 1.45 for the small room and 1.50 for the medium room compared to the other two ventilation strategies. The SV design guidelines are found adequate for the need of thermal comfort.\",\"PeriodicalId\":55613,\"journal\":{\"name\":\"International Journal of Ventilation\",\"volume\":\"29 1\",\"pages\":\"77 - 99\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ventilation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14733315.2022.2161142\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2022.2161142","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一项研究,旨在测试地层通风(SV)在热带(马来西亚)条件下的设计准则。设计了三种不同的通风策略和六种不同的SV情况,并通过改变回风口的布局和每小时换气量进行了研究。结果表明,在对侧墙体设置同一水平回风口的通风策略效果较好。对中型房间的模拟结果表明,仅在中心区域热舒适较好。靠近扩散器的位置太冷,而远离扩散器的位置太热。此外,气流模式表明,由于扩散器射流之间存在准停滞区,室内具有较高的PPD。小房间不存在类似情况,在PPD指数可接受范围内(0%-25%)。与其他两种通风策略相比,通风策略-1 (VS-1)具有更大的节能效果,小房间的EUC为1.45,中等房间的EUC为1.50。SV设计准则被认为足以满足热舒适的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The preliminary evaluation of design guidelines of stratum ventilation in a large tropical lecture hall
Abstract This article presents a study conducted to test the design guidelines of stratum ventilation (SV) for the conditions set in the tropics (Malaysia). Three different ventilation strategies and six different cases for SV were designed and examined by varying the layout of the return outlets and the air change per hour values. The ventilation strategy with a return outlet at the same level on opposite wall was found better than others. The simulation results of the medium-size room show that the thermal comfort is only favourable up to the centre region. Locations near the diffusers were noticed too cold and locations far away were too warm. In addition, the air flow pattern shows that the room has a high PPD due to quasi-stagnant zones that exist between the air jets from the diffusers. A similar condition does not exist in the small-size room, which was found under the acceptable range of PPD index (0%–25%). The ventilation strategy-1 (VS-1) is found with a greater energy saving with EUC 1.45 for the small room and 1.50 for the medium room compared to the other two ventilation strategies. The SV design guidelines are found adequate for the need of thermal comfort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Ventilation
International Journal of Ventilation CONSTRUCTION & BUILDING TECHNOLOGY-ENERGY & FUELS
CiteScore
3.50
自引率
6.70%
发文量
7
审稿时长
>12 weeks
期刊介绍: This is a peer reviewed journal aimed at providing the latest information on research and application. Topics include: • New ideas concerned with the development or application of ventilation; • Validated case studies demonstrating the performance of ventilation strategies; • Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc; • Developments in numerical methods; • Measurement techniques; • Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort); • Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss); • Driving forces (weather data, fan performance etc).
期刊最新文献
Assessing thermal resilience to overheating in a Belgian apartment: impact of building parameters Passive ventilation for building not subjected to solar radiation Experimental study on the periodic pulsating ventilation by fluidic oscillator on pollutant dispersion and ventilation performance in enclosed environment Compartmentalization and ventilation system impacts on air and contaminant transport for multifamily buildings Controllable baffle-type exhaust-hood in home kitchen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1