基于高分辨率网络的航空图像目标检测

Zhiyan Bao, Chen Xing, Xi Liang
{"title":"基于高分辨率网络的航空图像目标检测","authors":"Zhiyan Bao, Chen Xing, Xi Liang","doi":"10.1109/ICCSNT50940.2020.9304983","DOIUrl":null,"url":null,"abstract":"To detect trespassing in images captured by drones for water conservancy facilities inspection, this paper proposes a method that adapts Hight-Resolution Net to reserve high resolution features for improving detecting results. To detect trespassing target with small scale, this method parallels low-resolution and high-resolution conventical feature maps to reserve high-resolution features, besides that multi-scale fusions are conducted to enhance feature maps with different resolutions. Compare to Faster R-CNN, proposed method achieves 1.7% higher mAP on small targets.","PeriodicalId":6794,"journal":{"name":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","volume":"7 1","pages":"111-114"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object Detection on Aerial Image by Using High-Resolutuion Network\",\"authors\":\"Zhiyan Bao, Chen Xing, Xi Liang\",\"doi\":\"10.1109/ICCSNT50940.2020.9304983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To detect trespassing in images captured by drones for water conservancy facilities inspection, this paper proposes a method that adapts Hight-Resolution Net to reserve high resolution features for improving detecting results. To detect trespassing target with small scale, this method parallels low-resolution and high-resolution conventical feature maps to reserve high-resolution features, besides that multi-scale fusions are conducted to enhance feature maps with different resolutions. Compare to Faster R-CNN, proposed method achieves 1.7% higher mAP on small targets.\",\"PeriodicalId\":6794,\"journal\":{\"name\":\"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)\",\"volume\":\"7 1\",\"pages\":\"111-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSNT50940.2020.9304983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSNT50940.2020.9304983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了检测无人机采集的水利设施检测图像中的非法侵入,本文提出了一种利用high - resolution Net保留高分辨率特征以提高检测效果的方法。为了检测小尺度入侵目标,该方法对低分辨率和高分辨率常规特征图进行并行处理,保留高分辨率特征,并进行多尺度融合,增强不同分辨率的特征图。与Faster R-CNN相比,本文方法在小目标上的mAP提高了1.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Detection on Aerial Image by Using High-Resolutuion Network
To detect trespassing in images captured by drones for water conservancy facilities inspection, this paper proposes a method that adapts Hight-Resolution Net to reserve high resolution features for improving detecting results. To detect trespassing target with small scale, this method parallels low-resolution and high-resolution conventical feature maps to reserve high-resolution features, besides that multi-scale fusions are conducted to enhance feature maps with different resolutions. Compare to Faster R-CNN, proposed method achieves 1.7% higher mAP on small targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Optimal Rescheduling Mode of Flexible Job Shop Under the Arrival of a New Job Object Detection on Aerial Image by Using High-Resolutuion Network An Improved Ant Colony Algorithm is Proposed to Solve the Single Objective Flexible Job-shop Scheduling Problem RFID Network Planning for Flexible Manufacturing Workshop with Multiple Coverage Requirements Grounding Pile Detection System based on Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1