引导代码合成使用深度神经网络

Carol V. Alexandru
{"title":"引导代码合成使用深度神经网络","authors":"Carol V. Alexandru","doi":"10.1145/2950290.2983951","DOIUrl":null,"url":null,"abstract":"Can we teach computers how to program? Recent advances in neural network research reveal that certain neural networks are able not only to learn the syntax, grammar and semantics of arbitrary character sequences, but also synthesize new samples `in the style of' the original training data. We explore the adaptation of these techniques to code classification, comprehension and completion.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Guided code synthesis using deep neural networks\",\"authors\":\"Carol V. Alexandru\",\"doi\":\"10.1145/2950290.2983951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Can we teach computers how to program? Recent advances in neural network research reveal that certain neural networks are able not only to learn the syntax, grammar and semantics of arbitrary character sequences, but also synthesize new samples `in the style of' the original training data. We explore the adaptation of these techniques to code classification, comprehension and completion.\",\"PeriodicalId\":20532,\"journal\":{\"name\":\"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2950290.2983951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2983951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们能教计算机如何编程吗?神经网络研究的最新进展表明,某些神经网络不仅能够学习任意字符序列的句法、语法和语义,而且能够“以”原始训练数据的“风格”合成新的样本。我们探讨了这些技术在代码分类、理解和补全方面的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Guided code synthesis using deep neural networks
Can we teach computers how to program? Recent advances in neural network research reveal that certain neural networks are able not only to learn the syntax, grammar and semantics of arbitrary character sequences, but also synthesize new samples `in the style of' the original training data. We explore the adaptation of these techniques to code classification, comprehension and completion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of fault localization techniques Model, execute, and deploy: answering the hard questions in end-user programming (showcase) Guided code synthesis using deep neural networks Automated change impact analysis between SysML models of requirements and design Sustainable software design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1